Forum for Science, Industry and Business

Search our Site:

Clear vision despite a heavy head - model explains the choice of simple movements

10.11.2011
Simple actions are most often performed in the same manner, despite countless movement possibilities. A mathematical model explains why this is the case.

Using the example of gaze movements, scientists of the Ludwig-Maximilians-University Munich (LMU) and the Bernstein Center Munich show that we unconsciously choose those movements that minimize end point variability. This is true even if the head’s rotational inertia is experimentally altered. The findings could be used to generate more natural robot movements and to better adapt prosthetic devices to human movements.

Weights at the ends of the sticks alter the head‘s rotational inertia. A mathematical model predicts which eye and head movements are chosen during gaze shifts in this situation. Image: Nadine Lehnen, LMU Munich

In one respect, handling a computer mouse is just like looking in the rearview mirror: well established movements help the brain to concentrate on the essentials. But just a simple gaze shift to a new target bears the possibility of an almost infinite number of combinations of eye and head movement: how fast do we move eye and head? How much does the eye rotate, how much the head? Until now, it was unclear why the brain chooses a particular movement option from the set of all possible combinations. A team led by Dr. Stefan Glasauer (LMU), project leader at the Bernstein Center Munich, has now developed a mathematical model that accurately predicts horizontal gaze movements. Besides eye and head contribution to the gaze shift, it also predicts movement duration and velocity.

In contrast to most previous models, the researchers considered the movement of head and eye to the target as well as the counter-movement of the eye after the gaze has reached the target, but the head is still moving. “The longer the movement, the more perturbations add up,” says Glasauer. “However, the faster the movement, the more errors arise from acceleration and large muscle forces.” On the basis of this information, the Munich researchers calculated eye and head movements and determined the movement combination that caused the fewest disturbances. This movement matched that chosen by healthy volunteers - not only in natural conditions but also in an experiment where subjects’ head movements were altered by an experimental increase in the head’s rotational inertia (see picture).

These findings could help teach robots humanoid movements and thus facilitate interaction with service robots. It may also be helpful in the construction of “smart” prostheses. These devices could offer the carrier a choice of movements that come closest to the natural human ones. For the next step, Glasauer and colleagues want to examine three-dimensional eye-head movements and aim to better understand simple movement learning.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Saglam M, Lehnen N, Glasauer S (2011): Optimal control of natural eye-head movements minimizes the impact of noise. J Neurosci. 31(45):16185–16193
Dr. Stefan Glasauer
sglasauer@nefo.med.uni-muenchen.de
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Institute of Clinical Neurosciences
Marchioninistr. 23
81377 Munich, Germany
Phone: +49-89-7095-4839

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.bccn-munich.de/
http://www.nncn.de/

More articles from Life Sciences:

Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige