Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circuitry of fear identified

12.11.2010
Neurobiologists at the Friedrich Miescher Institute for Biomedical Research have identified, for the first time, clearly defined neural circuits responsible for the processing of fear states. These findings could ultimately help people suffering from post-traumatic stress disorder or anxiety disorders. The scientists' results have been published in the latest issue of Nature.

Fear arises in the almond-shaped brain structure known as the amygdala. It is the amygdala which processes the strange noise, shadowy figure or scary face and not only triggers palpitations or nausea but can also cause us to flee or freeze. That much has long been known about the function of this part of the brain.

What remains largely unclear, however, is precisely how fear develops, and which of the countless neurons in the amygdaloid region are involved in this process. But finding answers to these questions is vital for those who wish to improve the quality of life for people suffering as a result of traumatic experiences. In particular, patients with post-traumatic stress or anxiety disorders could benefit from the elucidation of neural processes in the amygdala.

Neurobiologists at the Friedrich Miescher Institute for Biomedical Research (FMI, part of the Novartis Research Foundation) have become the first to identify neural pathways and types of neurons in the amygdala which play a key role in the behavioral expression of fear. In two studies published in the latest issue of Nature, they show that there are clearly defined types of neurons in the amygdala which fulfill specific functions in the processing of fear inputs and subsequent fear responses. These cell types are organized in circuits, connecting neurons and various areas within the amygdala.

In collaboration with colleagues at the California Institute of Technology, the FMI neurobiologists went on to show that one of the cell types produces a signaling protein known as protein kinase C delta. This has provided the researchers with a marker for cells in the amygdala which directly regulate the expression of fear. They can now manipulate and study the behavior of these cells under a variety of conditions. Commenting on the relevance of their findings, FMI Group Leader Andreas Lüthi, who led the study, said: "We now have at our disposal a molecular tool which should allow us to gain a better understanding of processes in the amygdala - and also of phobias and post-traumatic stress disorders."

Lastly, the studies also revealed that these circuits play an important role in the generalization of fear. The same neurons are involved when fear becomes divorced from the original situation and becomes increasingly general. This may mean, for example, that some people's feelings of claustrophobia in an elevator will develop into a fear of crowds and, finally, fear of leaving the house. Patients with disorders of this kind live in a state of constant anxiety, which remains difficult to treat.

New methods shedding new light on neural circuits
For decades, the function of nerve cells has been studied with the aid of electrophysiological methods, which allow neural excitation to be measured in a particular region of the brain. Over the last few years, this method has increasingly been combined with newer, more powerful approaches. With so-called optogenetic methods, neurons can be stimulated selectively, rapidly and reversibly. This involves the use of light-sensitive membrane proteins from algae, such as channelrhodopsin, which are stimulated by light so as to activate neurons. Membrane proteins can be produced in selected neurons or selected neural circuits, making it possible to study clearly defined individual neurons. At the FMI, optogenetic approaches are being exploited and continuously refined by a number of neurobiology research groups. As well as being used in the work described above, this method has enabled FMI scientists to gain new insights into visual and olfactory processes.
Contact
Dr. Andreas Lüthi, andreas.luthi@fmi.ch, Tel. +41 61 697 82 71.
Original Publication
Ciocchi S et al. (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468:277-82
» Online publication
Haubensak W et al. (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 468:270-6

» Online publication

About the FMI
The Friedrich Miescher Institute for Biomedical Research (FMI), based in Basel, Switzerland, is a world-class center for basic research in life sciences. It was founded in 1970 as a joint effort of two Basel-based pharmaceutical companies and is now part of the Novartis Research Foundation. The FMI is devoted to the pursuit of fundamental biomedical research. Areas of expertise are neurobiology, growth control, which includes signaling pathways, and the epigenetics of stem cell development and cell differentiation. The institute counts 320 collaborators. The FMI also offers training in biomedical research to PhD students and postdoctoral fellows from around the world. In addition the FMI is affiliated with the University of Basel. The Director of the FMI since 2004 is Prof. Susan Gasser. This year, the FMI is celebrating its 40th anniversary.

Andreas Luethi | EurekAlert!
Further information:
http://www.fmi.ch

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>