Chromosomal “Breakpoints” Linked to Canine Cancer

When new species evolve, they leave genetic evidence behind in the form of “breakpoint regions.” These regions are sites on the genome where chromosomes broke during speciation (when new species of dogs developed). Dr. Matthew Breen, professor of genomics at NC State, and graduate student Shannon Becker looked at the breakpoint regions that occurred when the canid (dog) species differentiated during evolution. They compared the genomes of several wild canine species with those of the domestic dog. By overlaying the genomes, they found shared breakpoints among 11 different canid species – the so-called evolutionary breakpoints.

“The interesting thing about the breakpoint areas in the canid chromosome is that they are the same regions that we have shown to be associated with chromosome breaks in spontaneously occurring cancers,” Breen says. “It is possible that the re-arrangement of chromosomes that occurred when these species diverged from one another created unstable regions on the chromosome, and that is why these regions are associated with cancer.”

The researchers’ results appear in Chromosome Research.

“As species evolve, genetic information encoded on chromosomes can be restructured – resulting in closely related species having differently organized genomes,” says Becker. “In some cases, species acquire extra chromosomes, called B chromosomes. We looked at these extra B chromosomes in three canid species and found that they harbor several cancer-associated genes. Our work adds to the growing evidence that there is an association between cancer-associated genomic instability and genomic rearrangement during speciation.”

“The presence of clusters of cancer- associated genes on canid B chromosomes suggests that while previously though to be inert, these chromosomes may have played a role in sequestering excess copies of such genes that were generated during speciation,” adds Breen. “We now need to determine whether these stored genes are active or inert – that information could give us new tools in cancer detection and treatment.”

The research was funded by the Morris Animal Foundation. The Department of Molecular Biomedical Sciences is part of NC State’s College of Veterinary Medicine.

Media Contact

Tracey Peake EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors