Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholera: Fighting Fire with Fire

04.07.2014

 

Binding at five sites: effective cholera inhibitor based on cholera toxins

 

Cholera against cholera: a novel inhibitor prevents the cholera toxin from binding to carbohydrates found on the surface of intestinal cells. An international team of researchers has described their elegant concept in the journal Angewandte Chemie:

The protein scaffold of the inhibitor is based on an inactive cholera toxin. It is equipped with five sugar moieties to act as ligands. The inhibitor’s size and number of binding sites are both perfectly matched to the cholera toxin bearing five binding sites.

Cholera is a bacterial infectious disease that is primarily transmitted through insufficiently treated drinking water and contaminated foods. The actual pathogen is a toxin released by the bacteria; it attacks the cells of the intestine and causes life-threatening diarrhea.

... more about:
»Cholera »Fighting »GM1 »ligands »sugar

Cholera toxin is a protein consisting of a toxic A unit and five nontoxic B units (CTB). Its shape resembles a blossom with five petals. The “petals” are nontoxic, but they bind to special carbohydrates—the oligosaccharide units on glycolipid GM1—on the surface of intestinal cells, initiating uptake of the toxin. Each of the five B subunits possesses a specific binding site for the special sugar motif.

In order to put a stop to the pentavalent cholera toxin, scientist at the University of Leeds (UK), Wageningen University (Netherlands), and King Abdulaziz University in Jeddah (Saudi Arabia) have now developed a pentavalent inhibitor. To make it properly fit with its counterpart they fell back on the old principle of “fighting fire with fire”: They used an inactive version of the five “petals” from CTB subunits as the protein scaffold for their inhibitor.

Led by Bruce Turnbull, the researchers induced a mutation in the GM1 binding site of the CTB subunits so that the inhibitor does not bind to the intestinal cells. In addition, a special side chain on each of the “petals” was chemically altered so that they could undergo a coupling reaction by which five ligands were then attached with flexible spacers. The ligands were chosen to be the ideal binding partners for the toxin:

the saccharide units from glycolipid GM1. The advantage of this method is that the inhibitor presents the toxin with five ligands that are in exactly the same distance apart as the five binding sites of the toxin, making it the perfect counterpart. The potency of the new pentavalent inhibitor for its target molecule is thus correspondingly high.

Although the synthesis of the sugar motif is relatively complicated, the protein scaffold can easily be produced genetically on an industrial scale, and can easily be chemically modified and the saccharides attached. The researchers hope that this synthetic technique can be used to develop further multivalent inhibitors for other protein–carbohydrate interactions.

About the Author

Dr. Bruce Turnbull is an Associate Professor in the School of Chemistry and Astbury Centre for Structural Molecular Biology at the University of Leeds. He chairs an EU COST Action network on Multivalent Glycosystems for Nanoscience and was the 2013 recipient of the Royal Society of Chemistry Carbohydrate Award.

Author: W. Bruce Turnbull, University of Leeds (United Kingdom), http://www.chem.leeds.ac.uk/People/Turnbull.html

Title: A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404397

W. Bruce Turnbull | GDCh

Further reports about: Cholera Fighting GM1 ligands sugar

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>