Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlamydia protein has an odd structure, scientists find

12.06.2013
Research could lead to new ways to combat this sexually transmitted disease

A protein secreted by the chlamydia bug has a very unusual structure, according to scientists in the School of Medicine at The University of Texas Health Science Center San Antonio. The discovery of the protein's shape could lead to novel strategies for diagnosing and treating chlamydia, a sexually transmitted disease that infects an estimated 2.8 million people in the U.S. each year.

The protein, Pgp3, is secreted by Chlamydia trachomatis, the bacterium that causes chlamydia. Pgp3's shape is very distinguishable — sort of like an Eiffel Tower of proteins. "From a structural standpoint, the protein is very odd indeed," said X-ray crystallographer P. John Hart, Ph.D., the Ewing Halsell President's Council Distinguished Chair in the Department of Biochemistry at the San Antonio medical school. "This long and slender molecule contains a fusion of structural motifs that resemble those typically found in viral and not bacterial proteins." Dr. Hart is co-lead author of the research, which is described in the Journal of Biological Chemistry (JBC).

The Pgp3 protein is a chlamydial virulence factor that is hypothesized to enhance the bug's ability to initially infect its human host and then evade host defenses. "Although my lab has worked on this protein for many years and gained a great deal of knowledge on it, we still don't know what roles it may play in chlamydial pathogenesis (disease development)," said co-lead author Guangming Zhong, M.D., Ph.D., professor of microbiology at the Health Science Center. "With the structural information uncovered in this paper, we can now test many hypotheses."

This is the second chlamydial virulence factor that Dr. Zhong's laboratory has identified; the first was a protein called CPAF. Structural studies have played an important role in understanding CPAF's functions in chlamydial infections, Dr. Zhong said.

Chlamydia's toll

According to the U.S. Centers for Disease Control and Prevention (CDC), more than 1.4 million new cases of chlamydia were reported in 2011 across the 50 states and the District of Columbia. But the CDC says as many cases go unreported because most people with chlamydia have no symptoms and do not seek testing. If left untreated, chlamydia can permanently damage a woman's reproductive system. This can lead to ectopic pregnancy, pelvic inflammatory disease and infertility.

The disease burden of chlamydia worldwide is magnitudes greater, with new cases numbering in the dozens of millions per year. The World Health Organization estimates that 499 million new cases occur annually of four curable sexually transmitted diseases — chlamydia, syphilis, gonorrhea and trichomoniasis. This estimate is for cases in adults aged 15-49.

Chlamydia infection induces inflammatory pathology in humans, and Pgp3 may contribute to the pathology by activating inflammation via one of its structural features uncovered in the crystal structure, said Dr. Zhong, who has worked with Dr. Hart on the Pgp3 project for nearly four years.

ACKNOWLEDGMENTS: This work was supported by Robert A. Welch Foundation grant AQ-1399 (to PJH), and National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases grants AI47997 & AI64537 (to GZ). Portions of this work were supported by the Army Research Office of the U.S. Department of Defense under contract W911NF-11-1-0136 to The University of Texas at San Antonio/The University of Texas Health Science Center at San Antonio Center for Excellence in Genomics Research. A portion of the work took place at the Northeastern Collaborative Access Team beam lines of the Advanced Photon Source at Argonne National Laboratory, supported by award RR-15301 from the National Center for Research Resources at the NIH. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract W-31-109-ENG-38. Merck supported studies on the immunogenicity of Pgp3 in humans (to GZ). This work was also supported in part by the Cancer Center Support Grant of the Cancer Therapy & Research Center (CTRC) at the UT Health Science Center San Antonio (National Cancer Institute grant P30CA054174). Support for the X-ray Crystallography Core Laboratory by the UT Health Science Center San Antonio Office of the Vice President for Research is gratefully acknowledged.

Structure of the Chlamydia trachomatis Immunodominant Antigen Pgp3

Ahmad Galaleldeen 1,4,#, Alexander B. Taylor 1,3,#, Ding Chen 2, Jonathan P. Schuermann 5, Stephen P. Holloway 1, Shuping Hou 2, Siqi Gong 2, Guangming Zhong 2 and P. John Hart 1,3,6

1 Department of Biochemistry, 2 Department of Microbiology & Immunology, and 3 X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229; 4 St. Mary's University, Department of Biological Sciences, One Camino Santa Maria, San Antonio, TX 78228; 5 Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; 6 Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX 78229

#These authors contributed equally to this work.

On the Web, Facebook and Twitter

For current news from the UT Health Science Center San Antonio, please visit our news release website, like us on Facebook or follow us on Twitter.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving National Institutes of Health funding. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 28,000 graduates. The $736 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Will Sansom | EurekAlert!
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>