Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips, light and coding moves the front line in beating bacteria

16.08.2018

Multidisciplinary study finds way to examine biofilms with high efficiency

The never-ending fight against bacteria has taken a turn in humanity's favor with the announcement of a tool that could give the upper hand in drug research.


Hot chip: the nanomushroom chip used to grow bacterial colonies for testing.

Credit: OIST

Bacterial resistance to antibiotics has produced alarming headlines in recent years, with the prospect of commonly prescribed treatments becoming obsolete setting off alarm bells in the medical establishment.

More efficient ways of testing replacements are desperately needed, and a team from the Okinawa Institute of Science and Technology Graduate University (OIST) has just found one.

In their paper, published in ACS Sensors, the scientists look at a microbial structure called biofilms - bacterial cells that band together into a slimy matrix.

These are advantageous for bacteria, even giving resistance to conventional antibiotics. With properties like these, biofilms can be hazardous when they contaminate environments and industries; everything from tainting food production to clogging sewage treatment pipes. Biofilms can also become lethal if they make their way into medical facilities.

Understanding how biofilms are formed is key to finding ways to defeat them, and this study brought together OIST scientists from backgrounds in biotechnology, nanoengineering and software programming to tackle it.

The team focused on biofilm assembly kinetics - the biochemical reactions that allow bacteria to produce their linked matrix structure. Gathering intelligence on how these reactions function can tell a lot about what drugs and chemicals can be used to counteract them.

No tools were available to the team that would allow them to monitor biofilm growth with the frequency they needed to have a clear understanding of it. So, they modified an existing tool to their own design.

Dr. Nikhil Bhalla, working in OIST's Micro/Bio/Nanofluidics Unit led by Prof. Amy Shen took to the nanoscale to find a solution: "We created little chips with tiny structures for E. coli to grow on," he said. "They are covered in mushroom shaped nano-structures with a stem of silicon dioxide and a cap of gold."

Now all the team had to do was find some bacteria to work with. Reaching out to OIST's Structural Cellular Biology Unit, the team were helped by Dr Bill Söderström, who supplied stocks of E. coli on the surface of nanomushroom chips for the team to study.

When these nanomushrooms are subject to a targeted beam of light, they absorb it by Localized Surface Plasmon Resonance (LSPR). By measuring the difference between light wavelengths entering and exiting the chip, the scientists could make observations of the bacteria growing around the mushroom structures without disturbing their test subjects and affecting their results.

"This is the first time we have used this sensing technique to study bacterial cells," said Dr. Riccardo Funari, the team's resident biotechnologist, "but the problem we found was we couldn't monitor it in real time."

Getting a constant stream of data from their LSPR setup was possible, but required a whole new set of software to make it functional. Fortunately, research technician Kang-yu Chu was on hand to lend his programming expertise to the problem.

"We made an automatic measuring program with instant analysis based on existing software, which let us process the data with one click. It greatly reduced the manual work involved and let us correct any problems with the experiment as they happen," said Kang-yu.

Now these three disciplines have combined to make a benchtop tool that can be used in virtually any laboratory, and there are plans to miniaturize the technology into a portable device that could be used in a huge array of biosensing applications.

"Studies on clinically relevant microorganisms are coming next," said Dr. Funari, "and we're really excited about the applications. This could be a great tool for testing future drugs on lots of different kinds of bacteria." For now at least, humans are taking the lead in the bacterial battle.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!
Further information:
https://www.oist.jp/news-center/news/2018/8/15/chips-light-and-coding-moves-front-line-beating-bacteria
http://dx.doi.org/10.1021/acssensors.8b00287

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>