Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips, light and coding moves the front line in beating bacteria

16.08.2018

Multidisciplinary study finds way to examine biofilms with high efficiency

The never-ending fight against bacteria has taken a turn in humanity's favor with the announcement of a tool that could give the upper hand in drug research.


Hot chip: the nanomushroom chip used to grow bacterial colonies for testing.

Credit: OIST

Bacterial resistance to antibiotics has produced alarming headlines in recent years, with the prospect of commonly prescribed treatments becoming obsolete setting off alarm bells in the medical establishment.

More efficient ways of testing replacements are desperately needed, and a team from the Okinawa Institute of Science and Technology Graduate University (OIST) has just found one.

In their paper, published in ACS Sensors, the scientists look at a microbial structure called biofilms - bacterial cells that band together into a slimy matrix.

These are advantageous for bacteria, even giving resistance to conventional antibiotics. With properties like these, biofilms can be hazardous when they contaminate environments and industries; everything from tainting food production to clogging sewage treatment pipes. Biofilms can also become lethal if they make their way into medical facilities.

Understanding how biofilms are formed is key to finding ways to defeat them, and this study brought together OIST scientists from backgrounds in biotechnology, nanoengineering and software programming to tackle it.

The team focused on biofilm assembly kinetics - the biochemical reactions that allow bacteria to produce their linked matrix structure. Gathering intelligence on how these reactions function can tell a lot about what drugs and chemicals can be used to counteract them.

No tools were available to the team that would allow them to monitor biofilm growth with the frequency they needed to have a clear understanding of it. So, they modified an existing tool to their own design.

Dr. Nikhil Bhalla, working in OIST's Micro/Bio/Nanofluidics Unit led by Prof. Amy Shen took to the nanoscale to find a solution: "We created little chips with tiny structures for E. coli to grow on," he said. "They are covered in mushroom shaped nano-structures with a stem of silicon dioxide and a cap of gold."

Now all the team had to do was find some bacteria to work with. Reaching out to OIST's Structural Cellular Biology Unit, the team were helped by Dr Bill Söderström, who supplied stocks of E. coli on the surface of nanomushroom chips for the team to study.

When these nanomushrooms are subject to a targeted beam of light, they absorb it by Localized Surface Plasmon Resonance (LSPR). By measuring the difference between light wavelengths entering and exiting the chip, the scientists could make observations of the bacteria growing around the mushroom structures without disturbing their test subjects and affecting their results.

"This is the first time we have used this sensing technique to study bacterial cells," said Dr. Riccardo Funari, the team's resident biotechnologist, "but the problem we found was we couldn't monitor it in real time."

Getting a constant stream of data from their LSPR setup was possible, but required a whole new set of software to make it functional. Fortunately, research technician Kang-yu Chu was on hand to lend his programming expertise to the problem.

"We made an automatic measuring program with instant analysis based on existing software, which let us process the data with one click. It greatly reduced the manual work involved and let us correct any problems with the experiment as they happen," said Kang-yu.

Now these three disciplines have combined to make a benchtop tool that can be used in virtually any laboratory, and there are plans to miniaturize the technology into a portable device that could be used in a huge array of biosensing applications.

"Studies on clinically relevant microorganisms are coming next," said Dr. Funari, "and we're really excited about the applications. This could be a great tool for testing future drugs on lots of different kinds of bacteria." For now at least, humans are taking the lead in the bacterial battle.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!
Further information:
https://www.oist.jp/news-center/news/2018/8/15/chips-light-and-coding-moves-front-line-beating-bacteria
http://dx.doi.org/10.1021/acssensors.8b00287

More articles from Life Sciences:

nachricht Velcro for human cells
16.01.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht More efficient solar cells imitate photosynthesis
16.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>