Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chipping away at how ice forms could keep windshields, power lines ice-free

27.08.2019

How does ice form? Surprisingly, science hasn't fully answered that question. Differences in ice formation on various surfaces still aren't well understood, but researchers today will explain their finding that the arrangements that surface atoms impose on water molecules are the key. The work has implications for preventing ice formation where it isn't wanted (windshields, power lines) and for promoting ice formation where it is (food or organ preservation). The results could also help improve weather prediction.

The researchers will present their findings today at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition. ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 9,500 presentations on a wide range of science topics.


Surface atoms on a dust particle (shown in red, white, pink and yellow) impose an arrangement on water molecules (blue) that can promote or inhibit ice formation.

Credit: Sapna Sarupria and Ryan DeFever

"We discovered that if we look at the liquid water structure where it contacts the surface, we can start to understand and predict whether a given surface will promote or inhibit ice formation," says Sapna Sarupria, Ph.D., the project's principal investigator.

"We're working with collaborators to use this information to better understand the role of ice in weather and to design surfaces that are good or bad for ice formation. Wouldn't it be great to have a windshield that doesn't let ice stick to it in winter?"

Sarupria's team uses computers to study molecular simulations of surfaces and ice formation. Unlike the messier real world, this controlled setting gives her the ability to examine the impact of a change in just one surface parameter -- or even just one atom -- at a time. The researchers then correlate the findings with those of experimentalists who work with real-world materials, including silver iodide or minerals such as mica and kaolinite. Silver iodide is so effective at promoting ice formation that it's used for cloud seeding to stimulate rainfall during droughts.

Ice formation, or nucleation, occurs when liquid water undergoes a phase transition to solid water. Water can also undergo other phase transitions, such as changing from ice back to a liquid, or to vapor. If these transitions take place in clouds, they can form raindrops and snow.

"When you want to predict the weather, you need to know how these phase transitions happen, and that's essentially an open question," says Sarupria, who is at Clemson University. Often these changes occur in the presence of particles such as mineral dust in the atmosphere. The type and amount of dust determine the type of precipitation that occurs. "We're trying to understand how different dust particle surfaces affect the transition of water from the liquid to the solid phase in clouds," she says.

Good old H2O is just that: an oxygen bound to two hydrogens. Those hydrogens are attracted to some surfaces more than others, and that affects how water molecules orient on a surface. Their arrangement with respect to surface atoms on dust particles and in relation to other water molecules is actually the most important factor in ice formation, Sarupria's team discovered.

This finding also explains why silver iodide is such a good nucleator. First, its surface atoms are laid out in a way that's similar to the arrangement of water molecules in ice, so it's an effective template. Second, the positive charge of the silver ion and negative charge of the iodine orient the hydrogens and oxygens of liquid water in the right manner for it to form an ice structure. "The distances between the atoms, and this arrangement of charges, are very important for silver iodide to be a nucleator," Sarupria says.

The researchers are now collaborating with experimentalists who study atmospheric phenomena to help them explain their results. "If we can model these phenomena, we may be able to better understand the role of ice in weather," she explains.

Sarupria is also applying her understanding of water structure to design surfaces that can promote or inhibit ice formation. For example, to prevent damage during food storage or cryopreservation of organs, someone in the future could use the new knowledge to form ice at temperatures closer to 32 F, the freezing point of water, rather than at lower temperatures. This could be done by modifying the surface of the packaging or adding molecules to the solution for cryopreservation.

"In other cases, such as windshields and power lines, you may not want ice to form," Sarupria says. "So we're trying to figure out how to make coatings or surfaces that won't let ice form, or if it forms, that won't let it stick." Her team is also trying to understand how natural antifreeze proteins help fish and other organisms survive in frigid conditions.

"Ultimately, whether it's these proteins or dust particles, it all boils down to how they affect the water structure," she says. "We want to use this information to create a parameter that could help us quickly screen surfaces for their ice nucleation ability."

###

A press conference on this topic will be held Tuesday, Aug. 27, at 1 p.m. Pacific time in the San Diego Convention Center. Reporters may check-in at the press center, Room 14B, Mezzanine Level, or watch live on Youtube http://bit.ly/acs2019sandiego. To ask questions online, sign in with a Google account.

The researchers acknowledge support and funding from the National Science Foundation.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us on Twitter | Facebook

Title

Understanding heterogeneous ice nucleation through water structure and dynamics

Abstract

Heterogeneous ice nucleation relates to freezing of water driven by the presence of an impurity such as a mineral surface. Interestingly, it is not yet understood what about a surface promotes or inhibits the formation of ice. In our research, we evaluate the role of various surface properties on ice nucleation using molecular dynamics simulations. We have studied three types of surfaces - kaolinite-based, silver iodide-like and mica surfaces. Capitalizing on the power of molecular simulations we have carefully probed the effects of specific surface properties such as hydrogen bonding abilities, lattice spacing, and surface charge distribution on the propensity to observe ice nucleation. Furthermore, we related the structure of the metastable liquid near the surface to the propensity of ice nucleation. We find that certain characteristics of the liquid water structure - related to the orientations of water molecules near the surface - are good indicators of possible ice nucleation. We are expanding our understanding to correlate these observations with experimental findings. To this end, we focus on studies of ice nucleation near mica surfaces. Mica surfaces can be cleaved to be atomistically smooth in experiments making them an ideal choice for a collaborative experimental and simulation investigation. We study the effects of surface ion and charge distribution on ice nucleation. This combined approach provides information regarding the molecular mechanisms of ice nucleation near mica surfaces and the effect of surface ions on this behavior. Collectively, we focus on understanding the hydration behavior of water near the surfaces and its relation to likelihood of observing ice nucleation at these surfaces. Such insights help design surfaces that either inhibit ice nucleation (e.g., in cases such as wind mills, power lines, and transportation) or that promote ice nucleation (e.g., in cases such as food preservation and cryopreservation).

Media Contact

ACS Press Center in San Diego, Aug. 25-28
619-525-6219
newsroom@acs.org

Katie Cottingham, Ph.D.
301-775-8455
k_cottingham@acs.org

Katie Cottingham, Ph.D. | EurekAlert!

More articles from Life Sciences:

nachricht Developing a digital holography-based multimodal imaging system to visualize living cells
03.06.2020 | Kobe University

nachricht Possible physical trace of short-term memory found
03.06.2020 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>