Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chimpanzee uses innovative foresighted methods to fool humans

11.05.2012
Chimpanzee Santino achieved international fame in 2009 for his habit of gathering stones and manufacturing concrete projectiles to throw at zoo visitors.

A new study shows that Santino’s innovativeness when he plans his stone-throwing is greater than researchers have previously observed. He not only gathers stones and manufactures projectiles in advance; he also finds innovative ways of fooling the visitors. The study, which was carried out at Lund University, has been published in PLoS One.

The new study looked at the chimpanzee’s ability to carry out complex planning. The case study shows how humans’ closest relatives in the animal kingdom appear to be able to plan to deceive others, and that they can also plan their deception inventively. The behaviour of the chimpanzee Santino is of particular interest because it is done while the humans to be deceived are out of sight.

That means that the chimpanzee can plan without having immediate perceptual feedback of his goal – the visitors to the zoo – to aid in his planning.

The subject of the study is Santino the chimpanzee, who achieved international fame in 2009 for his habit of gathering stones and manufacturing concrete projectiles to throw at visitors from the safety of his enclosure at Furuvik Zoo north of Stockholm. His behaviour was reported as an example of spontaneous planning for a future event, in which his psychological state was visibly quite different from that of his subsequent aggressive displays. Previously, such cognitive abilities had been widely believed to be restricted to humans.

The new study sought to collect more detailed data on Santino’s projectile-throwing behaviour over the course of the 2010 zoo season.

In the new study, the chimpanzee continued and extended his previous behaviour of caching projectiles for later use in aggressive throwing displays. The new behaviour involved innovative use of concealments: both naturally occurring ones and ones he manufactured from hay. All were placed near the visitors’ area. This allowed Santino to throw his missiles before the crowd had time to back away.

The first hay concealment was made after the zoo guide had repeatedly backed visitors away when the chimpanzee made throwing attempts. All concealments were made when the visitors were out of sight, and the hidden projectiles were used when they returned. In order to make the hay concealments the chimpanzee had bring the hay from the inside enclosure.

Over the course of the season, the researchers observed that the use of concealments became the chimpanzees preferred strategy. Moreover, Santino combined two deception strategies consistently: hiding projectiles and inhibiting the displays of dominance that otherwise preceded his throws.

The new findings suggest that chimpanzees may be able to represent the future behaviour of others while those others are not present. It is also critical that the chimpanzee’s initial behaviour produced a future event, rather than merely preparing for one that had reliably occurred before. This in turn, suggest a flexible planning ability which, in humans, relies on creative re-combining of memories, mentally acted out in a ‘what if’ future scenario.

The authors of the study are Mathias Osvath, from the Department of Cognitive Science at Lund University, and Elin Karvonen, from the University’s Primate Research Station. The article is entitled ‘Spontaneous innovation for future deception in a male chimpanzee’ and has appeared in the journal PLoS One, published by the Public Library of Science.

The corresponding author, Mathias Osvath, can be reached on:
email: mathias.osvath@lucs.lu.se
tel. mobile: +46 705 330674

IHelga Ekdahl Heun | idw
Further information:
http://www.vr.se

Further reports about: Chimpanzee Cognitive Science aggressive displays

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>