Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists mimic nature to design better medical tests

15.02.2012
Over their 3.8 billion years of evolution, living organisms have developed countless strategies for monitoring their surroundings.

Chemists at UC Santa Barbara and University of Rome Tor Vergata have adapted some of these strategies to improve the performance of DNA detectors. Their findings may aid efforts to build better medical diagnostics, such as improved HIV or cancer tests.

Their research is described in an article published this week in the Journal of the American Chemical Society.

Nature often serves as a source of inspiration for the development of new technologies. In the field of medical diagnostics, for example, scientists have long taken advantage of the high affinity and specificity of biomolecules such as antibodies and DNA to detect molecular markers in the blood. These molecular markers allow them to monitor health status and to guide treatments for diseases, including HIV, cancer, and diabetes.

Kevin W. Plaxco, a professor of chemistry at UCSB, whose group carried out the research, notes that despite their great attributes, a main limitation of such biosensors is their precision, which is confined to a fixed, well-defined "dynamic range" of target concentrations. Specifically, the useful dynamic range of typical biomolecule binding events spans an 81-fold range of target concentrations

"This fixed dynamic range complicates –– or even precludes –– the use of biosensors in many applications," said Plaxco. "To monitor HIV progression and provide the appropriate medication, for example, physicians need to measure the levels of viruses over five orders of magnitude. Likewise, the two orders-of-magnitude range displayed by most biosensors is too broad to precisely monitor the concentrations of the highly toxic drugs used to treat many cancers. Our goal was, therefore, to create sensors with extended (for applications needing a broad dynamic range) or narrowed (for applications needing high measurement precision) dynamic ranges at will."

The key breakthrough underlying their new approach came from the simple observation of nature. "All living organisms monitor their environments in an optimized way by using sensing molecules that respond to either wide or narrow change in target concentrations," said Alexis Vallée-Bélisle, a postdoctoral fellow and the first author of the study. "Nature does so by combining in a very elegant way multiple receptors, each displaying a different affinity for their common target".

Inspired by the optimized behaviors of these natural sensors, the UCSB research group teamed up with Francesco Ricci, professor at the University of Rome Tor Vergata to do their own mixing and matching of biomolecules to manipulate biosensors' dynamic ranges. To validate their approach, they used a widely employed DNA-based biosensor used for detecting mutations in DNA called a "molecular beacon."

By combining sets of molecular beacons all binding the same target molecule but with differing affinities, the international team was able to create sensors with rationally "tuned" dynamic ranges. In one case, they developed a sensor that monitors DNA concentrations over a six orders of magnitude range. In another example, they developed an ultrasensitive sensor that precisely detects small changes in target concentration over only a five-fold dynamic range. Finally, they also built sensors characterized by complex, "custom-made" dynamic ranges in which the sensor is insensitive within a window of desired concentrations (e.g., the clinically "normal" concentration range of a drug) and very sensitive above or below this "appropriate" concentration range. The researchers believe that these strategies can be in principle applied to a wide range of biosensors, which may significantly impact efforts to build better point-of-care biosensors for the detection of disease biomarkers.

This work was funded by the National Institute of Health, the Fond Québécois de la Recherche sur la Nature et les Technologies, the Italian Ministry of University, and Research (MIUR) project "Futuro in Ricerca."

Andrea Estrada | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Coat of proteins makes viruses more infectious and links them to Alzheimer's disease
27.05.2019 | Stockholm University

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>