Chemists make beds with soft landings

Bedsprings aren't often found in biology. Now, chemists have succeeded in making a layer of tiny protein coils attached to a surface, much like miniature bedsprings in a frame. This thin film made of stable and very pure helices can help researchers develop molecular electronics or solar cells, or to divine the biology of proteins.

Physical chemists at the Department of Energy's Pacific Northwest National Laboratory pulled off this design trick using a “soft-landing” technique that disperses the tiny protein coils onto a waiting surface. The small proteins called peptides are of a variety that normally take the shape of a coiled spring or helix in gas phase. The method used by PNNL's Julia Laskin and Peng Wang delivered ultra-pure helical peptides to the surface and trapped them there, they report in July 29 and will appear in print in an upcoming issue of Angewandte Chemie.

“Controlling the conformation of peptides is not easy,” said Laskin. “Our previous studies showed that soft-landing can be used to prepare ultrapure peptide layers on substrates. The question we faced was, in addition to controlling purity, can we also control the structure of the molecules? We showed we could.”

Researchers have been trying to make thin films of helical peptides for many years. Because the peptides line up in an orderly fashion, the overall chemical nature of the thin films make them useful for a variety of technological applications. They can be modified with light sensitive molecules and turned into components of solar cells; or designed to change shape when a current is applied for molecular electronics. Also, the helices themselves can be used to elicit cues about how proteins function.

After making the thin films out of generic peptides previously, Laskin and Wang wanted to use this method to make a film out of helical peptides, and compare it with a more common method called electrospray.

To do so, Laskin and Wang began with peptides made almost entirely of the amino acid alanine. Due to alanine's chemical nature, long chains of it naturally form so-called á helices. The researchers ended the alanine chain with the amino acid lysine, which stabilizes the helix and allows the coiled chain to be chemically attached to the surface.

Working with a specially designed mass-selected ion deposition instrument at DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, they deposited the peptides on the support layer in one of two ways, starting either from a liquid form for electrospray or from a gaseous mixture for soft-landing. In each case, the chemists began with the peptides (either in liquid or gas), zapped them to give them a slight electrical charge and blew them onto the surface.

When the chemists examined the peptide shapes in the solution and the resulting thin film, they found, unexpectedly, that most of the peptides failed to form helices. Instead, the majority of peptides took on a flat shape known as a â sheet. The dearth of helices in liquid form surprised the researchers.

When the researchers next used soft-landing to form thin layers, they didn't know if the peptides would form helices before landing on the surface. “Because we were starting from something that wasn't á-helical in solution, we were a little pessimistic whether it would work at all,” Wang said.

But work it did. Depositing the peptides with soft-landing, the chemists found that nearly all of them alighted as helices. In addition, they could chemically connect the helices to the surface using a related technique called reactive-landing. When the chemists treated the thin layer with sound waves to test how easily the peptides fell off or changed shape, they found that some loosely bound peptides fell off, but those remaining maintained their helical forms.

“They formed a nicely organized, beautiful layer,” says Wang.

Next, the team would like to create thin peptide layers using different support surfaces and a different mix of peptide shapes, to learn how to control the design of the thin films precisely.

“We found an interesting pathway to conduct different types of chemical reactions between complex molecules and substrates that will potentially enable us to prepare materials that cannot be made by standard methods,” said Laskin.

“We hope to conduct lots of chemistry on the thin films,” said Laskin — chemistry that will let them spring forward into understanding biology and developing new materials.

Reference: P. Wang and J. Laskin, Helical Peptide Arrays on Self-Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass-Selected Ions, Angewandte Chemie, online July 29, 2008, DOI 10.1002/anie.200801366 (http://dx.doi.org/10.1002/anie.200801366).

This work was supported by PNNL discretionary funding and DOE's Office of Basic Energy Sciences, part of the Office of Science.

The Environmental Molecular Sciences Laboratory is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,000 staff, has a $855 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

Media Contact

Mary Beckman EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors