Chemists influence stem-cell development with geometry

“The cells are seeing the same soluble proteins. In both cases it's the shape alone that's dictating whether they turn into fat or bone, and that hasn't been appreciated before,” said Milan Mrksich, Professor in Chemistry and a Howard Hughes Medical Institute Investigator, who led the study. “That's exciting because stem-cell therapies are of enormous interest right now, and a significant effort is ongoing to identify the laboratory conditions that can take a stem cell and push it into a specific lineage.”

The UChicago team found that making cells assume a star shape promotes a tense cytoskeleton, which provides structural support for cells, while a flower shape promotes a looser cytoskeleton. “On a flower shape you get the majority of cells turning to fat, and on a star shape you've got the majority of cells turning into bone,” said Kris Kilian, a National Institutes of Health Fellow in Mrksich's research group. The UChicago team published its findings in the March 1 Early Edition of the Proceedings of the National Academy of Sciences.

Mrksich cautioned that the method is far from ready for use in the harvest of stem cells for therapeutic use, but it does signal a potentially promising direction for further study.

Mrksich's research group has a long history of developing methods for patterning surfaces with chemistry to control the positions, sizes and shapes of cells in culture, and applying those patterned cells to drug-discovery assays, and studies of cell migration and cell adhesion.

Citation: “Geometric cues for directing the differentiation of mesenchymal stem cells,” Proceedings of the National Academy of Sciences, March 1 Early Edition, by Kristopher A. Kilian, Branimir Bugarija, Bruce T. Lahn and Milan Mrksich.

Funding: National Cancer Institute and the National Institute of General Medical Sciences.

Media Contact

Steve Koppes EurekAlert!

More Information:

http://www.uchicago.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors