Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Chemical Reactions, Water Adds Speed Without Heat

18.05.2012
An international team of researchers has discovered how adding trace amounts of water can tremendously speed up chemical reactions—such as hydrogenation and hydrogenolysis—in which hydrogen is one of the reactants, or starting materials.

Led by Manos Mavrikakis, the Paul A. Elfers professor of chemical and biological engineering at the University of Wisconsin-Madison, and Flemming Besenbacher, a professor of physics and astronomy at the University of Aarhus, Denmark, the team published its findings in the May 18 issue of the journal Science.

Hydrogenation and hydrogenolysis reactions have huge applications in many key industrial sectors, including the petrochemical, pharmaceutical, food and agricultural industries. "In the petrochemical industry, for example, upgrading of oil to gasoline, and in making various biomass-derived products, you need to hydrogenate molecules—to add hydrogen—and all this happens through catalytic transformations," says Mavrikakis, who is among the top-100 chemists of the 2000-10 decade, according to Thomson Reuters.

A chemical reaction transforms a set of molecules (the reactants) into another set of molecules (the products), and a catalyst is a substance that accelerates that chemical reaction, while not itself being consumed in the process.

In industrial applications, the speed of catalytic transformations is important, says Mavrikakis. "The rate at which the hydrogen atoms diffuse on the surfaces of the catalyst determines, to a large extent, the rate of the chemical reaction—the rate at which we produce the products we want to produce," he says.

While many researchers have observed that water can accelerate chemical reactions in which hydrogen is a reactant or a product, until now, they lacked a fundamental grasp of how that effect was taking place, says Mavrikakis. "Nobody had appreciated the importance of water, even at the parts per million level," he says.

In their research, Mavrikakis and Besenbacher drew on their respective theoretical and experimental expertise to study metal oxides, a class of materials often used as catalysts or catalyst supports. They found that the presence of even the most minute amounts of water—on the order of those in an outer-space vacuum—can accelerate the diffusion of hydrogen atoms on iron oxide by 16 orders of magnitude at room temperature. In other words, water makes hydrogen diffuse 10,000 trillion times faster on metal oxides than it would have diffused in the absence of water. Without water, heat is needed to speed up that motion.

Besenbacher and his colleagues have one of the world's fastest scanning tunneling microscopes, which has atomic-scale resolution. With it, they could see how quickly hydrogen atoms diffused across iron oxide in the presence of water.

To explain the fundamental mechanisms of how that happened, Mavrikakis and his team used quantum mechanics, a branch of physics that explains the behavior of matter on the atomic scale; and massively parallel computing. Essentially, when water is present, hydrogen diffuses via a proton transfer, or proton "hopping," mechanism, in which hydrogen atoms from the oxide surface jump onto nearby water molecules and make hydronium ions, which then deliver their extra proton to the oxide surface and liberate a water molecule. That repeated process leads to rapid hydrogen atom diffusion on the oxide surface.

It's a process that doesn't happen willy-nilly, either. The researchers also showed that when they roll out the proverbial red carpet—a nanoscale "path" templated with hydrogen atoms—on iron oxide, the water will find that path, stay on it, and keep moving. The discovery could be relevant in nanoscale precision applications mediated by water, such as nanofluidics, nanotube sensors, and transfer across biological membranes, among others.

The U.S. Department of Energy Office of Basic Energy Sciences funded the UW-Madison research. Other UW-Madison authors on the Science paper include chemical and biological engineering research scientist Guowen Peng, PhD student Carrie Farberow, and PhD alumnus Lars Grabow (now an assistant professor at the University of Houston). Other authors include Lindsay Merte, Ralf Bechstein, Felix Rieboldt, Wilhelmine Kudernatsch, Stefan Wendt and Erik Laegsgaard of Aarhus University.

Manos Mavrikakis | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>