Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical data mining boosts search for new organic semiconductors: Molecular Lego blocks

14.02.2019

Organic semiconductors are lightweight, flexible and easy to manufacture. But they often fail to meet expectations regarding efficiency and stability. Researchers at the Technical University of Munich (TUM) are now deploying data mining approaches to identify promising organic compounds for the electronics of the future.

Producing traditional solar cells made of silicon is very energy intensive. On top of that, they are rigid and brittle. Organic semiconductor materials, on the other hand, are flexible and lightweight. They would be a promising alternative, if only their efficiency and stability were on par with traditional cells.


Both the carbon-based molecular frameworks and the functional groups decisively influence the conductivity of organic semiconductors.

Image: C. Kunkel / TUM


First author Christian Kunkel, PD Dr. Harald Oberhofer and Prof. Karsten Reuter (fltr)

Image: A. Battenberg / TUM

Together with his team, Karsten Reuter, Professor of Theoretical Chemistry at the Technical University of Munich, is looking for novel substances for photovoltaics applications, as well as for displays and light-emitting diodes – OLEDs. The researchers have set their sights on organic compounds that build on frameworks of carbon atoms.

Contenders for the electronics of tomorrow

Depending on their structure and composition, these molecules, and the materials formed from them, display a wide variety of physical properties, providing a host of promising candidates for the electronics of the future.

"To date, a major problem has been tracking them down: It takes weeks to months to synthesize, test and optimize new materials in the laboratory," says Reuter. "Using computational screening, we can accelerate this process immensely."

Computers instead of test tubes

The researcher needs neither test tubes nor Bunsen burners to search for promising organic semiconductors. Using a powerful computer, he and his team analyze existing databases. This virtual search for relationships and patterns is known as data mining.

"Knowing what you are looking for is crucial in data mining,” says PD Dr. Harald Oberhofer, who heads the project. "In our case, it is electrical conductivity. High conductivity ensures, for example, that a lot of current flows in photovoltaic cells when sunlight excites the molecules."

Algorithms identify key parameters

Using his algorithms, he can search for very specific physical parameters: An important one is, for example, the "coupling parameter.” The larger it is, the faster electrons move from one molecule to the next.

A further parameter is the "reorganization energy": It defines how costly it is for a molecule to adapt its structure to the new charge following a charge transfer – the less energy required, the better the conductivity.

The research team analyzed the structural data of 64,000 organic compounds using the algorithms and grouped them into clusters. The result: Both the carbon-based molecular frameworks and the "functional groups", i.e. the compounds attached laterally to the central framework, decisively influence the conductivity.

Identifying molecules using artificial intelligence

The clusters highlight structural frameworks and functional groups that facilitate favorable charge transport, making them particularly suitable for the development of electronic components.

"We can now use this to not only predict the properties of a molecule, but using artificial intelligence we can also design new compounds in which both the structural framework and the functional groups promise very good conductivity," explains Reuter.

Further information:

The project was funded by the "Solar Technologies go Hybrid" research initiative of the Bavarian State Government and is part of the new Cluster of Excellence e-conversion of the Munich universities funded by the German Research Foundation.

The structural data for the analysis were taken from the Cambridge Structural Database. The conductivity data was generated in sophisticated electronic structure calculations on Super-MUC, the supercomputer of the Leibniz Supercomputing Center in Garching. The new computer-designed molecules will be produced in a laboratory within the Cluster of Excellence e-conversion.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Karsten Reuter
Chair of Theoretical Chemistry
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49 89 289 13616
karsten.reuter@ch.tum.de

Originalpublikation:

Finding the Right Bricks for Molecular Lego: A Data Mining Approach to Organic Semiconductor Design
Christian Kunkel, Christoph Schober, Johannes T. Margraf, Karsten Reuter, Harald Oberhofer
Chem. Mater. 2019, 31, 3, 969-978 – DOI: 10.1021/acs.chemmater.8b04436
https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04436

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35249/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>