Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical Circuits for the Molecular Diagnosis and Treatment of Previously Incurable Diseases


As part of the German government’s High-Tech-Strategy 2025, the Federal Ministry of Education and Research (BMBF) is funding an interdisciplinary research group that aims to use an innovative circuit technology to solve a central problem of genetic investigation of human single cells. Medical professionals hope that such research will drastically improve the diagnosis and therapy of many serious diseases and enable the treatment of or even cure for cancer and immune diseases, for which there are currently no suitable methods available.

However, this will require molecular analysis systems that can examine hundreds or thousands of these cells individually and simultaneously. Current technology does not allow such analyses.

Anthony Beck, co-developer of the technology, holds a chemical circuit with coloured analysis media. In the background is a microscopic image of one of the chemical transistors of the chemical IC.

TU Dresden

Scientists in Dresden would therefore like to use chemo-fluidic circuits developed at the “Center for Advancing Electronics Dresden” cluster.

These are based on chemical transistors, which, analogous to microelectronics, make it possible to combine complete information-processing systems on a single chip.

However, they do not control electrical currents, but rather the fluid currents containing the human cells, which are to be examined. And they themselves are directed through the chemicals and liquids necessary for the analysis.

The researchers strive to build integrated circuits that, owing to the combination of thousands chemical transistors on a chip, are able to independently and simultaneously conduct complex analysis procedures on hundreds or thousands of individual human cells.

Initially, the scientists will focus on the development of chemical chips for the diagnosis of a special type of white blood cell cancer (acute myeloid leukaemia), for which therapy could be fundamentally improved if successful. At a later stage, they hope to develop circuits for the treatment of other diseases.

Financing by the VIP+ Programme of the BMBF:

With the High-Tech-Strategy 2025 “Research and Innovation for People”, the Federal Government has set itself the goal of identifying the diverse application potentials of excellent research even more quickly and effectively, and of making them available to industry and society.

To achieve this, the bridge between academic research and it’s commercial exploitation or societal application must be further strengthened. The BMBF funding measure “Validation of the technological and societal innovation potential of scientific research – VIP+” addresses this issue and supports researchers in systematically validating research results and in opening up areas of application.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Richter
Technische Universität Dresden
Faculty of Electrical and Computer Engineering
Institute for Semiconductors and Microsystems
01062 Dresden
Tel.: +49 351 463 36336

Prof. Dr. Mario Menschikowski
Carl Gustav Carus University Hospital Dresden
Institute for Clinical Chemistry and Laboratory Medicine
Fetscherstr. 74
01307 Dresden
Tel.: +49 351 458-2634

Katrin Presberger | Technische Universität Dresden
Further information:

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>