Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Circuits for the Molecular Diagnosis and Treatment of Previously Incurable Diseases

13.01.2020

As part of the German government’s High-Tech-Strategy 2025, the Federal Ministry of Education and Research (BMBF) is funding an interdisciplinary research group that aims to use an innovative circuit technology to solve a central problem of genetic investigation of human single cells. Medical professionals hope that such research will drastically improve the diagnosis and therapy of many serious diseases and enable the treatment of or even cure for cancer and immune diseases, for which there are currently no suitable methods available.

However, this will require molecular analysis systems that can examine hundreds or thousands of these cells individually and simultaneously. Current technology does not allow such analyses.


Anthony Beck, co-developer of the technology, holds a chemical circuit with coloured analysis media. In the background is a microscopic image of one of the chemical transistors of the chemical IC.

TU Dresden

Scientists in Dresden would therefore like to use chemo-fluidic circuits developed at the “Center for Advancing Electronics Dresden” cluster.

These are based on chemical transistors, which, analogous to microelectronics, make it possible to combine complete information-processing systems on a single chip.

However, they do not control electrical currents, but rather the fluid currents containing the human cells, which are to be examined. And they themselves are directed through the chemicals and liquids necessary for the analysis.

The researchers strive to build integrated circuits that, owing to the combination of thousands chemical transistors on a chip, are able to independently and simultaneously conduct complex analysis procedures on hundreds or thousands of individual human cells.

Initially, the scientists will focus on the development of chemical chips for the diagnosis of a special type of white blood cell cancer (acute myeloid leukaemia), for which therapy could be fundamentally improved if successful. At a later stage, they hope to develop circuits for the treatment of other diseases.

Financing by the VIP+ Programme of the BMBF:

With the High-Tech-Strategy 2025 “Research and Innovation for People”, the Federal Government has set itself the goal of identifying the diverse application potentials of excellent research even more quickly and effectively, and of making them available to industry and society.

To achieve this, the bridge between academic research and it’s commercial exploitation or societal application must be further strengthened. The BMBF funding measure “Validation of the technological and societal innovation potential of scientific research – VIP+” addresses this issue and supports researchers in systematically validating research results and in opening up areas of application.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Richter
Technische Universität Dresden
Faculty of Electrical and Computer Engineering
Institute for Semiconductors and Microsystems
01062 Dresden
Email: andreas.richter7@tu-dresden.de
Tel.: +49 351 463 36336

Prof. Dr. Mario Menschikowski
Carl Gustav Carus University Hospital Dresden
Institute for Clinical Chemistry and Laboratory Medicine
Fetscherstr. 74
01307 Dresden
Tel.: +49 351 458-2634
Email: Mario.Menschikowski@uniklinikum-dresden.de

Katrin Presberger | Technische Universität Dresden
Further information:
http://www.tu-dresden.de

More articles from Life Sciences:

nachricht New self-assembled monolayer is resistant to air
22.01.2020 | University of Groningen

nachricht Mosquitoes are drawn to flowers as much as people -- and now scientists know why
22.01.2020 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Possible Alzheimer's breakthrough suggested

22.01.2020 | Health and Medicine

New tool for investigating brain cells, Parkinson's, and more

22.01.2020 | Life Sciences

Drug combo reverses arthritis in rats

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>