Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checkmate for hepatitis B viruses in the liver

12.06.2019

Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model. The team showed in its publication, that T-cell therapy can provide a permanent cure. Up to now it has not been possible to fully control the virus. Their findings have now been published in the Journal of Clinical Investigation.

Infections with the hepatitis B virus (HBV) are a global health problem. According to the World Health Organisation (WHO), more than 260 million people worldwide are chronically infected with the virus. Vaccination prevents new HBV infections, but for people who are chronic carriers of the virus, a cure has not yet been found.


The image shows in a HBV-specific T cell (green) attacking a target cell, in which viral proteins are produced (red) and HBV negative cells (blue).

Credit: Helmholtz Zentrum München / Jochen Wettengel

Available drugs only prevent the virus from continuing to replicate in liver cells, but they cannot eliminate it. In the long term, this can lead to complications such as liver cancer or liver cirrhosis, whereby functional liver tissue is replaced by fibrous connective tissue.

"Currently, chronic hepatitis B cannot be cured. We have now been able to show that T-cell therapy exploiting new technologies presents an encouraging solution for the treatment of chronic HBV infection and liver cancer that is triggered by the virus. That is because these 'living drugs' are the most potent therapy we have at our disposal at present," explains Prof. Ulrike Protzer.

She is Director of the Institute of Virology at the Helmholtz Zentrum München and at the Technical University of Munich, both members of the German Center for Infection Research (DZIF).

T cells eliminate hepatitis B

According to Dr. Karin Wisskirchen, first author of the study and scientist in the group of Ulrike Protzer, the new T-cell therapy was specifically developed as an approach to fighting HBV infection and HBV-associated liver cancer. It is known that in chronically infected patients, virus-specific T cells either cannot be detected or they demonstrate decreased activity. However, if patients are able to keep the virus under control by themselves, a strong T-cell response becomes detectable.

"The obvious answer is therefore to use virus-specific T cells to make up for this deficit," Dr. Wisskirchen says. The genetic information for HBV-specific T-cell receptors was obtained from patients with resolved infection. In the laboratory, it can then be introduced into T cells from the blood of patients with chronic hepatitis B. This leads to the formation of new, active T cells, which fight the virus or virus-induced cancer cells. T cells created in this way were able to completely eliminate HBV-infected cells in the cell culture.

In cooperation with the group led by Prof. Maura Dandri, Hamburg the immune cells were then tested in a humanized mouse model**. A single dose of the receptor-modified T-cells was sufficient to control the virus in the liver. Hereby, the T-cells only attacked infected liver cells and spared healthy tissue. Myrcludex B***, an experimental drug developed by Prof. Stephan Urban, Heidelberg, was then administered to prevent the virus from infecting healthy liver cells again as soon as the T-cells had stopped circulating. As a result, the infection was completely cured.

Preparations for a clinical study

"The promising results of this study will help us to further investigate the potential of T-cell therapy and go ahead with clinical trials along with our partners. We are thus taking a decisive step towards establishing this form of personalized medicine," Prof. Protzer says. Her group will therefore continue to explore ways of applying the therapy to the widest possible group of patients. The Helmholtz Zentrum München has out-licensed parts of its T-cell therapy to SCG Cell therapy Pte. Ltd. "Together with our partner we are planning a clinical trial to study the treatment of patients with HBV-associated hepatocellular carcinoma," Dr. Wisskirchen explains. T-cell therapy is a highly innovative area that has gained momentum thanks to the significant success of clinical trials in the treatment of lymphoma. Prof. Dandri stresses: "Such progress would not be possible without the close cooperation that we have within the German Center for Infection Research."

###

Further information

  • T cells (T-lymphocytes) are a group of white blood cells, and are thus an important component of the body's immune system. They mature in the thymus gland, hence the abbreviation to "T" cells.
  • These investigations were carried out using a highly complex "humanized" mouse model that can be reconstituted with human liver cells, thus enabling the investigation of HBV and the preclinical evaluation of antiviral drug candidates. Prof. Dandri, who co-developed the model, heads the Virus Hepatitis Research Group at the I. Medical Clinic of the UKE, a partner institution of the German Centre for Infection Research (DZIF).
  • Myrcludex B is an inhibitor of the entry of HB viruses into liver cells. It is currently in a pivotal phase III clinical trial for the treatment of chronic hepatitis D. Mycludex B was developed by Prof. Stephan Urban at the University Hospital of Heidelberg, a partner institution of the German Centre for Infection Research (DZIF).

Original publication:

Wisskirchen K, Kah J et al (2019), T cell receptor grafting allows virological control of hepatitis B virus infection. JCI. DOI: 10.1172/JCI120228;

Further articles on this subject

The article is the following publication describes how the T-cell receptors were isolated and characterized: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182936

Hepatitis B virus infection: Degradation of viral DNA in the cell nucleus is opening up new treatment possibilities

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

http://www.helmholtz-muenchen.de

The Institute of Virology (VIRO) investigates viruses that chronically infect humans and can cause life-threatening diseases. The research activities of the institute focus mainly on the HI virus which causes AIDS, on endogenous retroviruses, which are integrated into our germline, and hepatitis B and C viruses, which cause liver cirrhosis and hepatocellular carcinoma. Molecular studies identify new diagnostic and therapeutic concepts to prevent and treat these viral diseases or to prevent the formation of virus-induced tumors.

http://www.helmholtz-muenchen.de/viro

The Technical University of Munich (TUM) is one of Europe's leading research universities, with around 550 professors, 41,000 students, and 10,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

http://www.tum.de/en/homepage

At the German Center for Infection Research (DZIF), over 500 scientists from 35 institutions nationwide jointly develop new approaches for the prevention, diagnosis and treatment of infectious diseases. Their aim is to translate research results into clinical practice rapidly and effectively. With this, the DZIF paves the way for developing new vaccines, diagnostics and drugs in the fight against infections.

Further information at: http://www.dzif.de.

Vangelis Papagrigoriou | EurekAlert!
Further information:
https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releases/press-release/article/46390/index.html
http://dx.doi.org/10.1172/JCI120228

Further reports about: Checkmate Environmental Health HBV T-cell TUM hepatitis B liver cells viruses

More articles from Life Sciences:

nachricht Tube anemone has the largest animal mitochondrial genome ever sequenced
12.06.2019 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Reaching and Grasping – Learning fine motor coordination changes the brain
12.06.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923?base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

Im Focus: Experiments and calculations allow examination of boron's complicated dance

Work opens a path to precise calculations of the structure of other nuclei.

In a study that combines experimental work and theoretical calculations made possible by supercomputers, scientists have determined the nuclear geometry of two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Checkmate for hepatitis B viruses in the liver

12.06.2019 | Life Sciences

Laser flashes for polarized electron and positron beams

12.06.2019 | Physics and Astronomy

Marine oil snow

12.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>