Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charge Order and Electron Localization in a Molecule-Based Solid

22.01.2018

Charge ordering in cationic mixed-valence compounds is of crucial importance for materials science. The prototypic example for a transition from a charge-disordered to a charge-ordered state has been magnetite, Fe3O4, where Evert Verwey observed a sudden jump in resistivity near -150°C. In the journal Science Advances now a research team of scientists from Germany and Slovenia reports a Verwey-type charge-ordering transition in a different class of mixed-valence compounds that is composed of negatively charged dioxygen molecules.

Charge ordering in mixed-valence compounds, which usually contain positively charged cations in more than one formal charge state, is of crucial importance for materials science. Many functional properties of materials like magnetism, magnetoresistance, ionic conductivity and superconductivity are found in mixed valence compounds.


Illustration of the Verwey-type charge ordering transition in Cs4O6

PA/ MPI CPfS

One of the very first attempts to understand the mechanism of a charge ordering transition dates back to 1939 when Evert Verwey, a Dutch chemist, observed a sudden jump in resistivity in the prototypic mixed valence compound magnetite, Fe3O4, near -150°C. He proposed that in the nearly metallic state of Fe3O4 at temperatures higher than -150°C, certain iron atoms are indistinguishable in the crystal lattice due to a full delocalization of charges.

However, below this temperature a semiconducting state with a complex ordering pattern of charges over the available iron sites was established. In general, a transition from a charge-disordered into a charge-ordered state which is accompanied by a jump in electrical resistivity is nowadays called Verwey transition.

In the journal Science Advances now a research team of scientists from Germany and Slovenia reports a Verwey-type transition in a completely different class of mixed-valence compounds which is composed of negatively charged dioxygen molecules.

The cesium compound Cs4O6 undergoes a phase transition from a state with indistinguishable molecular O2x- entities to a state with well- defined singly charged superoxide O2- and doubly charged peroxide O22- anions, which is accompanied by a corresponding change in charge transport dynamics. These results are supposed to shed new light on the mechanism of Verwey-type charge ordering phenomena.

“The Verwey-type transition in the cesium oxide Cs4O6 is conceptually more simple than the original one in Fe3O4” states Peter Adler, the first author of the study. Whereas in Fe3O4 the charge order state is complex and it is difficult to identify individual charge states the situation is more unambiguous in Cs4O6 as the molecular entities in the charge ordered state reveal the typical structural and magnetic features of the constituting paramagnetic superoxide and diamagnetic peroxide units.

The authors have established the properties of Cs4O6 by using several experimental techniques, namely neutron diffraction for the study of the crystal structure as well several spectroscopic techniques for verifying a charge localization transition which is a typical hallmark for Verwey-type charge ordering processes.

By contrast to Fe3O4 the present compound Cs4O6 remains magnetically disordered down to a temperature of -271°C which is only two degrees above the absolute zero point and it is much less conducting than Fe3O4. The molecular nature of the basic building units and the peculiar features of Cs4O6 should be favorable for disentangling the complex interplay of the charge, spin, and lattice contributions to Verwey-type charge ordering phenomena. The intertwining of the different degrees of freedom may in the future even be used to control new materials functionalities through the Verwey transition.

Contemporary examples for functional materials properties related to mixed-valence are high-temperature superconductivity in copper oxide-based superconductors where the superconducting state competes with a magnetic and charge order state or very large (“colossal”) magnetoresistance effects in certain manganese oxides which occur in the vicinity of a transition from a delocalized to a more localized mixed-valence state.

Accordingly, unravelling the mechanism of charge ordering processes in mixed-valence compounds is an important subject in materials science. The breakthrough of the present study is the observation of such charge ordering in a relatively simple crystal structure where novel physical phenomena is expected to emerge from intertwining of degrees of freedom pertinent to the well-defined electronically active oxygen molecular units.

The work was partly performed within the project LEMSUPER (Light Element Molecular Superconductivity) which was supported by the EU Seventh Framework Programme (FP7). Further on, the work was supported by the Slovenian Research Agency. The research involved cooperation of several institutions in Germany and Slovenia, namely the Max Planck institutes for Chemical Physics of Solids in Dresden and for Solid State Research in Stuttgart, the Helmholtz Centre for Materials and Energy in Berlin, the Justus-Liebig University in Giessen, the Jožef Stefan Institute in Ljubljana and the University of Ljubljana.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Weitere Informationen:

http://www.cpfs.mpg.de

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>