Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019

The anti tumor protein p53 can decide on the life or death of a cell: If it detects damage in the cell's genome, the protein pushes the cell to suicide. New research conducted at Technical University of Munich (TUM) shows that this inborn cancer prevention only works when special proteins, known as chaperones, allow it to take place.

A cancer therapy without side-effects, that specifically attacks only tumor cells: still a dream for doctors and patients alike. But nature has long since developed exactly this kind of focused anti-tumor program.


In the folded state of the protein p53, donor and acceptor are close enough for an energy transfer (left). In the unfolded state, induced by chaperones, they are too far apart.

Image: G. Agam / LMU & V. Dahiya / TUM

Each of our cells is equipped with it: When serious damage to the genome is detected, the cell destroys itself, thus preventing the growth of the tumor. A research team in Munich has now decoded the complex regulatory mechanism, which involves a number of different proteins.

"We've known for some time that such a regulatory mechanism exists, and that the tumor suppressor protein p53 plays a key role. What was not known before was the role played by molecular chaperones in regulating the cellular machinery," explains Prof. Johannes Buchner, who holds the TUM Professorship for Biotechnology.

A look at the molecular machine

The chaperones, as they are called in biotechnology, are proteins that make sure that other proteins fold properly and thus remain functional. In their laboratory the researchers demonstrated that two groups of these "escort" proteins, Hsp70/40 and Hsp90, control the function of the tumor suppressor protein p53 by influencing its three-dimensional structure.

The biochemists investigated what happens in the test tube upon adding the chaperones Hsp40 and Hsp70 to a solution containing p53. p53 lost its ability to bind to DNA, meaning that its biological activity also ceased.

Fluorescence reveals the structure

But what makes all this work? To answer this question, the scientists marked p53 with fluorescent dyes, making it possible for them to monitor the structure of individual p53 molecules.

In isolation, p53 alone is folded; under the influence of Hsp40 and Hsp70 it is completely unfolded, consuming energy in the process. The opposite effect was observed when the chaperone Hsp90 was added: It put the unfolded p53 back into its active, folded form.

"We were very surprised by this enormous impact of the chaperones," Buchner recalls. "Here the cell has an extremely complex regulatory mechanism which the chaperones use to keep the tumor suppressor protein in line."

As long as these molecular escorts are available, p53 stays unfolded and biologically inactive. But if the cell comes under pressure and the chaperones have to keep the peace at another location, p53 folds, binds to the DNA and, when necessary, triggers the cellular suicide.

According to Buchner, an understanding of this molecular interaction could in the future help to better understand the role of proteins and to find new points of attack for cancer therapies.

More information:

The structure of p53 was investigated using Fluorescence Resonance Energy Transfer (FRET). The procedure is based on the concept that when the protein labeled with the donor dye is excited by light, it triggers the acceptor dye molecules, at a distance of only a few nanometers, to emit light thereby revealing structural changes in a protein.

Working together with a team led by Prof. Don Lamb at Ludwig Maximilian University of Munich, the researchers were thus able to measure individual p53 molecules and to observe how these molecules change their structure under the influence of Hsp40 and Hsp70 or Hsp90.

This research was funded by the German Research Foundation (DFG) (SFB 1035, the Clusters of Excellence Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM)). The lead author was supported with an Alexander von Humboldt Foundation postdoctoral fellowship.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Johannes Buchner
Professorship for Biotechnology
Technical University of Munich
Lichtenbergstraße 4 85748 Garching
Tel.: +49 89 289 13341 – E-mail: Johannes.Buchner@tum.de

Originalpublikation:

Vinay Dahiya, Ganesh Agam, Jannis Lawatscheck, Daniel Andreas Rutz, Don C. Lamb, Johannes Buchner: Coordinated conformational processing of the tumor suppressor protein p53 by the Hsp70 and Hsp90 chaperone machineries, Molecular Cell, April 23, 2019, DOI: 10.1016/j.molcel.2019.03.026
Link: https://www.sciencedirect.com/science/article/abs/pii/S1097276519302308

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35454/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: Biotechnology DNA Hsp90 chaperone p53 protein p53 tumor suppressor tumor suppressor protein

More articles from Life Sciences:

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

nachricht Researchers reveal mechanisms for regulating temperature sensitivity of soil organic matter decompos
15.07.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>