Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channels for the Supply of Energy

19.11.2018

Freiburg scientists elucidate the mechanism for the transport of water-insoluble protein molecules in mitochondria

Working in cooperation with international colleagues, researchers from the University of Freiburg have described how water-insoluble membrane proteins are transported through the aqueous space between the mitochondrial membranes with the aid of chaperone proteins.


This image shows a graphical depiction how mitochondrial TIM transfer-chaperones use multiple clamp-like binding sites to transport membrane protein substrates in elongated, nascent chain like conformation through the mitochondrial intermembrane space. The image depicts this principle by showing two ‘dodecapuses’ holding a sea snake with multiple of their tentacles.

Image: Yong Wang (Lindorff-Larsen lab) and Wei Chen

The membrane proteins enable the cellular powerhouses to import and export small biomolecules. Thus the team led by Prof. Dr. Nils Wiedemann from Freiburg and Dr. Paul Schanda from Grenoble (France) together with researchers from the University of Copenhagen (Denmark) and the University of Tübingen has answered a fundamental question about the formation of mitochondria.

The European Research Council (ERC) funded the research with both a Consolidator Grant and a Starting Grant. The scientists have published their results in the science journal Cell.

In the same way that the human body consists of various organs, eukaryotic cells contain small organelles such as the mitochondria, which synthesize the energy molecule adenosine triphosphate (ATP). The total amount of ATP that the mitochondrial membranes transport to supply the cells each day is roughly as much as the individual's body weight.

This process depends on special channel and transporter protein molecules that are present in the inner membrane and outer membrane of mitochondria. These channels and transporters are produced outside the mitochondria and are transported across the outer membrane.

Although these protein molecules are not soluble in water, they have to be transported through the aqueous intermembrane space, so that they can be integrated into the outer or inner mitochondrial membrane.

To achieve this, the intermembrane space contains special TIM chaperone proteins, which bind the channel and transporter proteins to facilitate their transport through the intermembrane space.

To identify the molecular mechanism of this process Dr. Katharina Weinhäupl performed structural work and Caroline Lindau performed functional mitochondrial studies which complemented each other.

The results show that the ring-shaped TIM chaperones have six water-repellent brackets to which the channels and transporters are loosely attached to prevent their aggregation. This is important because many diseases such as Alzheimer's or Parkinson's are associated with the formation of aggregates of protein molecules. Likewise, a malfunction of the TIM chaperones can cause Mohr-Tranebjærg syndrome with neurological deafness and movement disorders.

Nils Wiedemann is a group leader at the Institute of Biochemistry and Molecular Biology and a member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies as well as the Spemann Graduate School of Biology and Medicine (SGBM) at the University of Freiburg.

Original publication:
Katharina Weinhäupl, Caroline Lindau, Audrey Hessel, Yong Wang, Conny Schütze, Tobias Jores, Laura Melchionda, Birgit Schönfisch, Hubert Kalbacher, Beate Bersch, Doron Rapaport, Martha Brennich, Kresten Lindorff-Larsen, Nils Wiedemann, Paul Schanda: Structural Basis of Membrane Protein Chaperoning Through the Mitochondrial Intermembrane Space. In: Cell 175, 1365-1379. https://doi.org/10.1016/j.cell.2018.10.039

Caption:
This image shows a graphical depiction how mitochondrial TIM transfer-chaperones use multiple clamp-like binding sites to transport membrane protein substrates in elongated, nascent chain like conformation through the mitochondrial intermembrane space. The image depicts this principle by showing two ‘dodecapuses’ holding a sea snake with multiple of their tentacles.
Image: Yong Wang (Lindorff-Larsen lab) and Wei Chen

Contact:
Prof. Dr. Nils Wiedemann
Institute of Biochemistry and Molecular Biology
University of Freiburg
Tel.: +49 761 203-5280
nils.wiedemann@biochemie.uni-freiburg.de

Originalpublikation:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/channels-for-the-supply...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>