Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chance discovery sheds new light on vision

21.07.2010
A chance discovery has led Australian scientists to question key assumptions about how our vision works.

Their results show the brain is more flexible and versatile than the computer it is often likened to, and even may lead to new tests for blinding diseases such as glaucoma.

Previously it was thought that the brain’s ability to discern colour depends on a specialised nerve ‘colour channel’, but now, say researchers from The Vision Centre and Sydney University, it appears some colour-sensing cells can also signal movement.

“In this research we discovered that blue sensing cells not only can respond to black and white patterns, but surprisingly are even sensitive to the direction of pattern movement,” explains team leader Professor Paul Martin.

“In diseases like glaucoma, your colour vision is impaired. Now we have discovered that the colour cells can also sense black and white and movement, that gives us a new way of testing to see if the cells are healthy or not. Our colleagues in The Vision Centre include experts at designing tests for glaucoma, and they now have a new clue that may make their tests even more sensitive,” he adds.

The serendipitous finding happened when young researcher Maziar Hashemi-Nezhad decided to carry out an unplanned experiment that came up with a totally unexpected result.

“It was chance. Maziar was in the lab, late at night, and decided to see if he could get colour vision cells to respond to a moving black and white pattern – something which was considered most unlikely because the prevailing scientific view was they respond only to colour. He saw an immediate response,” Prof Martin says.

“This is an example of how ‘blue sky’ science may lead to a practical outcome. The goal of this work is not to study glaucoma, it is really all about trying to interpret the signals on the ‘fax line’ that connects the eyes to the brain – this discovery takes us one small step closer to understanding what is really going down the fax line,” he explains.

“For a long time we’ve had an image of the brain as a kind of computer, with particular pathways – or ‘wires’- for particular nerve signals. Now it is becoming clear the wiring is a lot less precise than a computer. But imprecise wiring is actually flexible because it creates many backup pathways to compensate for aging and damage,” Prof. Martin says.

The researchers’ paper “Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus” by Chris Tailby, William Dobbie, Samuel Solomon, Brett Szmajda, Maziar Hashemi-Nezhad, Jason Forte and Paul Martin has just appeared in the Journal of Vision (2010), Volume 10 (8), pages 1-18.

The Vision Centre is funded by the Australian Research Council as the ARC Centre of Excellence in Vision Science.

More information:
Professor Paul Martin, The Vision Centre and The University of Sydney, ph +61 2 9382 7631 or 0423 011 061
Professor Trevor Lamb, The Vision Centre, ph +61 (0)2 61258929 or 0434022375
Julian Cribb, The Vision Centre media contact, 0418 639 245
http://www.vision.edu.au/

Professor Paul Martin | scinews.com.au
Further information:
http://www.vision.edu.au/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>