Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Century old rule of Chemistry overturned - major implications for drug delivery

26.08.2008
A new study by research chemists at the University of Warwick has challenged a century old rule of pharmacology that defined how quickly key chemicals can pass across cell walls. The new observations of the Warwick researchers suggest that the real transport rates could be up to a hundred times slower than predicted by the century old “Overton’s Rule”. This could have major implications for the development and testing of many future drugs.

Overton’s rule says that the easier it is for a chemical to dissolve in a lipid (fat) the easier and faster it will be transported into a cell. The Rule was first outlined in the 1890s by Ernst Overton of the University of Zürich. He declared that substances that dissolve in lipids pass more easily into a cell than those that dissolve in water.

He then set forth an equation that predicted how fast that diffusion would happen. One of the key parameters in that equation is K which defines the lipophilicity (oil-liking nature) of the chemical. The higher the value of K, the faster the predicted cell permeation rate. For over a century, medicinal chemists have used this relationship to shape their studies and clinical trials.

A team of electrochemists from the University of Warwick used a combination of a confocal microscope and an ultramicroelectrode to study what really happens when a chemical crosses a cell membrane. Advances in technology enabled them to position an ultramicroelectrode incrediblely close to the membrane boundary (roughly 20 microns away; ca. 1/3rd the thickness of a human hair) where it was used to generate a range of acids that should be able to diffuse relatively easily into a cell. These techniques allowed every step of the diffusion process to be directly examined. Previous studies had not been able to observe every step of the process and often required artificial stirring of the solutions.

The results stunned the researchers. While the acids did diffuse across a lipid membrane, they did so at rates that were diametrically opposite to the predictions of the Rule, i.e. the most lipophilic molecules were actually transported slowest. The researchers studied four acids (acetic, butanoic, valeric, and hexanoic) that had increasingly larger “acyl” (or carbon) chains. The longer the carbon chain, the easier the chemical dissolves in lipids and, therefore, according to Overton, the faster they should diffuse across a lipid membrane. In fact, the University of Warwick researchers observed that for these four acids the exact opposite is true: the easier it is for an acid to dissolve in a lipid, the slower it is transported across the membrane.

The research team will now use their technique to examine the diffusion into cells of a range of other chemicals. The lead researcher on the study from the University of Warwick, Professor Patrick Unwin, said:

“This was a surprising and exciting finding. Our direct observations appear to totally undermine a key rule that has withstood the test of time for over a century. We will now make observations with a range of other chemicals, and with other techniques, to further elucidate the molecular basis for our observations. Text books will have to be rewritten to revise a rule that has been relied on for over a century. Advanced techniques, such as the one we have developed, should give much clearer insight into the action of a wide range of drug molecules, which will be of significant interest to drug developers.”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>