Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Century old rule of Chemistry overturned - major implications for drug delivery

26.08.2008
A new study by research chemists at the University of Warwick has challenged a century old rule of pharmacology that defined how quickly key chemicals can pass across cell walls. The new observations of the Warwick researchers suggest that the real transport rates could be up to a hundred times slower than predicted by the century old “Overton’s Rule”. This could have major implications for the development and testing of many future drugs.

Overton’s rule says that the easier it is for a chemical to dissolve in a lipid (fat) the easier and faster it will be transported into a cell. The Rule was first outlined in the 1890s by Ernst Overton of the University of Zürich. He declared that substances that dissolve in lipids pass more easily into a cell than those that dissolve in water.

He then set forth an equation that predicted how fast that diffusion would happen. One of the key parameters in that equation is K which defines the lipophilicity (oil-liking nature) of the chemical. The higher the value of K, the faster the predicted cell permeation rate. For over a century, medicinal chemists have used this relationship to shape their studies and clinical trials.

A team of electrochemists from the University of Warwick used a combination of a confocal microscope and an ultramicroelectrode to study what really happens when a chemical crosses a cell membrane. Advances in technology enabled them to position an ultramicroelectrode incrediblely close to the membrane boundary (roughly 20 microns away; ca. 1/3rd the thickness of a human hair) where it was used to generate a range of acids that should be able to diffuse relatively easily into a cell. These techniques allowed every step of the diffusion process to be directly examined. Previous studies had not been able to observe every step of the process and often required artificial stirring of the solutions.

The results stunned the researchers. While the acids did diffuse across a lipid membrane, they did so at rates that were diametrically opposite to the predictions of the Rule, i.e. the most lipophilic molecules were actually transported slowest. The researchers studied four acids (acetic, butanoic, valeric, and hexanoic) that had increasingly larger “acyl” (or carbon) chains. The longer the carbon chain, the easier the chemical dissolves in lipids and, therefore, according to Overton, the faster they should diffuse across a lipid membrane. In fact, the University of Warwick researchers observed that for these four acids the exact opposite is true: the easier it is for an acid to dissolve in a lipid, the slower it is transported across the membrane.

The research team will now use their technique to examine the diffusion into cells of a range of other chemicals. The lead researcher on the study from the University of Warwick, Professor Patrick Unwin, said:

“This was a surprising and exciting finding. Our direct observations appear to totally undermine a key rule that has withstood the test of time for over a century. We will now make observations with a range of other chemicals, and with other techniques, to further elucidate the molecular basis for our observations. Text books will have to be rewritten to revise a rule that has been relied on for over a century. Advanced techniques, such as the one we have developed, should give much clearer insight into the action of a wide range of drug molecules, which will be of significant interest to drug developers.”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>