Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Census" in the zebrafish's brain - Dresden scientists explore newborn, regenerated neurons

09.01.2020

Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a “census” in their brains. Following an injury, zebrafish form new neurons in high numbers and integrate them into the nervous system, which is the reason for their amazing brain regeneration ability. The study was conducted as a collaboration project “made in Dresden”. They have now published their results in the scientific journal DEVELOPMENT, which reports on topics of developmental, stem cell and regenerative biology.

The zebrafish is a master of regeneration: If brain cells are lost due to injury or disease, it can simply reproduce them - contrary to humans where this only happens in the fetal stage.


Fluorescence microscope image of zebrafish brain cells: Newly formed neurons have a magenta stained nucleus and are surrounded by turquoise cells

© Christian Lange

However, the zebrafish is evolutionarily related to humans and, thus, possesses the same brain cell types as humans. Can a hidden regeneration potential also be activated in humans? Are therapies for stroke, craniocerebral trauma and presently incurable diseases such as Alzheimer's and Parkinson's possible?

Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a “census” in their brains. Following an injury, zebrafish form new neurons in high numbers and integrate them into the nervous system, which is the reason for their amazing brain regeneration ability.

The study was conducted as a collaboration project “made in Dresden”: Scientists from the Center for Regenerative Therapies TU Dresden (CRTD) combined their expertise in stem cell biology with the latest methods from the DRESDEN-concept Genome Center and complex bio-informatic analyses from the Max Planck Institute for the Physics of Complex Systems and the Center for Systems Biology Dresden.

They have now published their results in the scientific journal DEVELOPMENT, which reports on topics of developmental, stem cell and regenerative biology.

For their study, the team led by Dr. Christian Lange and Prof. Dr. Michael Brand from the CRTD used adult transgenic zebrafish in whose forebrain they were able to identify the newborn neurons. The forebrain of the zebrafish is the equivalent to the human cerebral cortex, the largest and functionally most important part of the brain.

The Dresden research team investigated the newborn and mature neurons as well as brain stem cells using single cell sequencing. Thus, they discovered specific markers for newborn neurons and were able to comprehensively analyse which types of neurons are newly formed in the adult brain of the zebrafish.

The scientists discovered two types of neurons that can be newly formed: Projection neurons, which create connections between brain areas, and internal neurons, which serve to fine-tune the activity of the projection neurons. The researchers also investigated the data obtained from brain cell sequencing of mice and found that zebrafish and mice have the same cell types. This also makes these results highly relevant for humans.

"On the basis of this study, we will further investigate the regeneration processes that take place in zebrafish. In particular, we will study the formation of new neurons after traumatic brain damage and their integration," explains Prof. Dr. Michael Brand, CRTD Director and senior author of the study.

"We hope to gain insights that are relevant for possible therapies helping people after injuries and strokes or suffering from neurodegenerative diseases. We already know that a certain regenerative ability is also present in humans and we are working on awakening this potential. The results of our study are also important for understanding the conditions under which transplanted neurons can network with the existing ones and thus could let humans re-gain their former mental performance.”

The CRTD at TU Dresden is the academic home for scientists from more than 30 nations. Their mission is to discover the principles of cell and tissue regeneration and leveraging this for recognition, treatment and reversal of diseases.

The CRTD links the bench to the clinic, scientists to clinicians to pool expertise in stem cells, developmental biology, gene-editing and regeneration towards innovative therapies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease, haematological diseases such as leukaemia, metabolic diseases such as diabetes, retina and bone diseases. The group of Prof. Dr. Michael Brand investigates the patterning and regeneration of the vertebrate brain and eye.

This study was funded by the TU Dresden / CRTD through the German Excellence Initiative and the German Research Foundation as well as through an ERC Advanced Grant from the European Research Council for Prof. Dr. Michael Brand. In addition, it was supported by the Max Planck Institute for Physics of Complex Systems, the Center for Systems Biology Dresden and the Center for Molecular and Cellular Bioengineering (CMCB) at the TU Dresden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Brand
Tel: +49 (0) 351 458 82301
Email: michael.brand@tu-dresden.de
Webpage: www.tu-dresden.de/crtd

Originalpublikation:

Development: „Single cell sequencing of radial glia progeny reveals diversity of newborn neurons in the adult zebrafish brain” by Christian Lange, Fabian Rost, Anja Machate, Susanne Reinhardt, Matthias Lesche, Anke Weber, Veronika Kuscha, Andreas Dahl, Steffen Rulands and Michael Brand,
https://dev.biologists.org/content/early/2019/11/19/dev.185595

Janne Stolte | Technische Universität Dresden
Further information:
https://tu-dresden.de/tu-dresden/newsportal/news/volkszaehlung-im-gehirn-des-zebrafischs-dresdner-wissenschaftler-untersuchen-neugebildete-regenerierte-gehirnzellen?set_language=en

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>