Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular transporter involved in gene silencing - Importin guides switch molecules to their targets

23.02.2009
Specific gene-silencing is involved in the development of cancer and plays an essential role in gene regulation. Small noncoding ribonucleic acids (miRNAs) are important regulators of genes.

In order to switch off a gene, they interact with so called Argonaute proteins - the subsequent complex induces the shutdown or even degradation of the genetic information. Until now, how this molecular switch works was widely unknown. Scientists of the Max Planck Institute of Biochemistry have now identified the protein Importin 8 as a central factor, that facilitates the switch molecule to find its target (Cell (2009), Cell 6th February, 2009).

Ribonucleic acids (RNAs) carry as messenger-RNAs (mRNAs) genetic information from DNA to cellular protein factories, where they are translated into proteins. But they also have important regulatory functions: Small noncoding RNAs (miRNAs) influence mRNA stability and are able to switch off genes by stalling their translation into proteins. Defects of these regulation processes may lead to cancer and neurodegenerative diseases. Therefore miRNAs are important objects of research and - in the future - could become the basis for new therapeutic strategies.

However, miRNAs can't shut off genes on their own: They need to form complexes with other proteins. As far as humans are concerned, the argonaute protein Ago-2 is the key cellular binding partner of miRNAs: The Ago-miRNA complex binds to mRNA and impedes their translation into proteins - either by blocking the translation process or by initiating RNA decomposition. "While there are a lot of studies concerning miRNA processing, the target mRNA recognition and binding by the Ago-miRNA-complex is only poorly understood", says Gunter Meister, the head of the research group "RNA biology" at the Max Planck Institute. Now his group has identified the first protein factor which is required for gene-silencing by Ago-miRNA-complexes: Importin 8.

Importin 8 interacts with Ago and miRNA and is necessary for the binding of the Ago-miRNA-complex to a variety of mRNA targets: In the cytoplasm - i.e. the intracellular space outside the nucleus - it recruits the complex to its target, allowing for efficient and specific gene-silencing. "Without Importin 8 no mRNA deactivation is possible", points Lasse Weinmann out, who conducted the study as part of his PhD thesis.

Furthermore, the scientists discovered a second mode of action of Importin 8: Importins are molecules that are responsible for the transport of proteins into the nucleus. "As we realised that our new factor is an Importin, it was an obvious supposition that transport processes might play a role in gene-silencing", explains Meister. Indeed the scientists proved that Importin 8 is involved in the transport of Ago-miRNA-complexes into the nucleus. This is especially interesting, because over the past years there have been controversial discussions as to whether or not small noncoding RNAs occur in the nucleus. "Our findings indicate that the Ago-miRNA-complex in the nucleus must serve a purpose. Possibly it is involved in gene regulation, too. But it is also conceivable, that there are other, yet unknown, functions", says Meister, "our results are a beginning to solving these questions".

Original Publication:
Weinmann et al.: Importin Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs; Cell. 2009 Feb 6;136(3):496-507.
Contact:
Dr. Gunter Meister
RNA Biology
meister@biochem.mpg.de
Dr. Monika Gödde/Eva-Maria Diehl
Public Relations
Max Planck Institute of Biochemistry
Am Klopferpsitz 18
82152 Martinsried, Germany
Phone: +49 (89) 8578 2824
diehl@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/meister
http://www.biochem.mpg.de/en/news/pressroom

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>