Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular pathway linked to diabetes, heart disease

20.04.2012
Cardiac researchers at the University of Cincinnati (UC) have found that a certain cellular pathway is linked to obesity-related disorders, like diabetes, heart disease and fatty liver disease.

These findings, being presented at the American Heart Association's Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) 2012 Scientific Sessions in Chicago, April 19, 2012, could lead to a potential molecular target for metabolic diseases in humans.

Building on previous research, Tapan Chatterjee, PhD, and researchers in the division of cardiovascular diseases at UC found that genetically "deleting" the enzyme histone deacetylase 9 (HDAC9) completely protected mice against the health consequences of high-fat feeding, like elevated blood sugar, cholesterol levels and fatty liver disease.

Chatterjee says HDAC9 has been found to lead to obesity-induced body fat dysfunction.

"Failure of fat cells to differentiate and properly store excess calories in obesity is associated with adipose tissue (fat) inflammation, fatty liver disease, insulin resistance, diabetes and increased cardiovascular diseases," he says. "We know that dysfunctional fat tissue is the underlying culprit in obesity-related diseases.

"Caloric intake promotes HDAC9 down-regulation to allow the conversion of precursor fat cells to 'functional' fat cells, capable of efficiently storing excess calories for future use and also maintaining whole-body lipid and glucose stability," Chatterjee continues. "Unfortunately, during chronic over-feeding, the HDAC9 level is up-regulated in fat tissue, thereby blocking the conversion which leads to adipose tissue dysfunction and the onset of diseases such as diabetes, liver disease, high blood pressure and heart disease—the nation's No. 1 killer."

Chatterjee says that in previous studies, researchers found that elevated HDAC9 expression in fat cells was the underlying molecular culprit for dysfunctional fat tissue during obesity.

"In this study, we used 'knockout' mouse models to test this theory," he says. "Deleting the HDAC9 gene completely prevented mice from developing obesity-related diseases during chronic high-fat feeding. These results mean the discovery of a potential molecular culprit in obesity-related disease development."

Chatterjee says emerging evidence from his laboratory indicates that unhealthy dietary habits over a long period of time promote specific changes in a human's epigenetic structure—meaning changes in the gene structure that influences its function—to switch HDAC9 expression to a higher level.

"This switch paves the way for development of a chronic disease state, despite subsequent dietary intervention," he says. "We are currently focusing our attention to design drugs to reverse such epigenetic changes to bring HDAC9 expression down and restore normal fat cell function in obese individuals, representing a novel treatment strategy for obesity-related disease conditions."

This study was funded by a grant from the National Heart Lung and Blood Institute.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht All-in-one: New microbe degrades oil to gas
20.08.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New artificial compound eye could improve 3D object tracking
20.08.2019 | The Optical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>