Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular metabolism as the key to treating allergic dermatitis?


Researchers at the Department of Dermatology at Inselspital have discovered a relationship between cells which could advance the treatment of allergic skin diseases. Their discovery was published in Science Immunology.

The function of so-called “TH9” cells in humans remains elusive. These interleukin-9 (IL-9)-producing T helper (TH) cells play an important role in inflammatory reactions and tumor immunity in animal models.

The immunfluorescence shows TH cells (in green, CD4+) in the skin of a patient with acute allergic contact dermatitis. Several of these cells express the transcription factor PPAR-γ (in red).

Department of Dermatology, Inselspital, Bern University Hospital

In order to better understand the role of TH9 cells in humans, Prof. Dr. Christoph Schlapbach and his research team at the Department of Dermatology at Inselspital and the Department for Biomedical Research at the University of Bern have examined these cells in greater depth.

Closely related allergy-inducing T cells

Most notably, the team discovered that TH9 cells are not a separate population, but rather a distinct subpopulation of the already known TH2 cells which contribute decisively to the induction of allergies. As a result, they were characterised as “IL-9+ TH2 cells”.

Consistent with this interrelation, the researchers have found that this cell type is involved in such allergic skin diseases as atopic dermatitis (atopic eczema, neurodermatitis) or allergic contact eczema.

In order to understand how the new cells can be distinguished from conventional TH2 cells, the team carried out modern transcriptomic analyses. In the course of this, the transcription factor PPAR-γ was identified as an important regulator of IL-9+ TH2 cells.

PPAR-γ is a well-known regulator of cellular metabolism, i.e. the processes occurring in cells to produce energy and biologic building blocks. Until now, the function of PPAR-γ in fat and muscle cells was known, but its function in TH cells has only recently been examined.

An old acquaintance and new therapeutic approaches

PPAR-γ has already been used as a therapeutic target for treating type 2 diabetes. The fact that it also plays a key role in IL-9+ TH2 cells therefore opens up new ways for treating such allergic skin diseases as neurodermatitis.

“Because PPAR-y regulates the cells that have now been characterised, we might be able to manipulate this cell population with it,” explains Christoph Schlapbach.

“It is therefore conceivable that already existing medications can be used to treat diseases in which IL-9+ TH cells are involved, a process called "drug repositioning”."

Before this hypothesis can be tested in initial clinical trials, the researchers now want to examine more closely how IL-9 and PPAR-y interact in allergic skin conditions. For this purpose, continuation studies are currently being carried out at the Department of Dermatology at Inselspital.

Wissenschaftliche Ansprechpartner:

Prof. Dr. med. Christoph Schlapbach, Senior Physician, Prof. Dr. med. Christoph Schlapbach, Senior Physician, Department of Dermatology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern,


DOI: 10.1126/sciimmunol.aat5943

Weitere Informationen:

Monika Kugemann | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Dermatology Metabolism TH2 cells cell type eczema skin type 2 diabetes

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>