Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells with double vision

19.02.2009
How one and the same nerve cell reacts to two visual areas

In comparison to many other living creatures, flies tend to be small and their brains, despite their complexity, are quite manageable. Scientists at the Max Planck Institute of Neurobiology in Martinsried have now ascertained that these insects can make up for their low number of nerve cells by means of sophisticated network interactions.

The neurobiologists examined nerve cells that receive motion information in their input region from only a narrow area of the fly's field of vision. Yet, thanks to their linking with neighbouring cells, the cells respond in their output regions to movements from a much wider field of vision. This results in a robust processing of information. Nature Neuroscience, February 8, 2009.

The complexity of the human brain is remarkable: It contains billions of nerve cells, each of which is connected with its neighbours via many thousands of contacts. The result is a multifaceted network which stores and processes many types of information. In comparison, the brain of a fly seems fairly simple with its 250 000 nerve cells. For example, a small network of only 60 nerve cells in each cerebral hemisphere suffices the blowfly to integrate visual motion information. The resulting information is then used in the control and correction of the fly's flight manoeuvres. However, flies clearly demonstrate just how efficient these 60 cells actually are when they dodge obstacles while flying at high speed and land upside-down on the ceiling. No wonder neurobiologists find the brain of the fly so fascinating!

Rationing resources

Thanks to the comparatively small number of nerve cells in the fly's visual flight control centre, the connections and functions of the cells involved can be examined in greater detail. It soon became apparent that the 60 nerve cells are further sub-divided into several individual cell groups, each of which is responsible for the processing of certain patterns of movement. A group of ten cells, known as the VS-cells, respond to rotational movements of the fly, for example. Each of these ten cells receives its visual information from only a narrow vertical strip of the fly's eye - the cell's "receptive field". Since the VS-cells are arranged parallel to each other, the fly's field of vision is completely covered by the vertical strips of the ten cells on each side of the fly's brain (the figure shows three of the ten VS-cells).

Complexity by means of connectivity

"However, the most fascinating aspect of these VS-cells is that the closer we examined the network, the more complex it appeared", group leader Alexander Borst reports. He and his group at the Max Planck Institute of Neurobiology are devoted to investigating the motion vision of flies. Only recently, Borst's co-worker Jürgen Haag showed that VS-cells are connected on two different levels. It was well known that in their input regions, the cells collect incoming signals from nerve cells which represent local motion information coming from the eye. Yet, it came as a surprise that the cells had a second source of information. The scientists found electrical connections between neighbouring VS-cells in the cells' output regions. Computer simulations of this network led to the following assumption: Information received from a VS-cell's "own" receptive field is first compared with the information received by its neighbouring cells. Only then is the information relayed to cells further downstream in the network for the purpose of flight control.

Getting to the bottom of it

The immediate prediction from this work was somewhat of a surprise. Could a single cell have two different receptive fields, depending on which part of the cell is taken into consideration? In Martinsried, the neurobiologist Yishai Elyada now looked at this question. He examined the reactions of the VS-cells to moving stimuli using a large variety of techniques. The breakthrough came when he used a special microscopy technique which visualizes changes in the concentrations of calcium within the cells. The calcium concentration in many kinds of nerve cells, including VS cells, changes when the cell becomes active. Changes in the calcium level therefore reveal when and where a nerve cell reacts to a stimulus.

In order to determine the receptive field of each VS-cell, Elyada presented moving stripe patterns to the flies while simultaneously monitoring the changes in the calcium levels within the cells. The results correlated well with the scientist's predictions. In their input region, VS-cells do indeeed respond to movement in only a narrow area of the visual field. In contrast, in the cells' output region, each cell also responds to movement in the receptive fields of its neighbouring cells. The prior assumption that the receptive field of a nerve cell is a single unit must therefore be re-evaluated. In future, such statements need to distinguish between the input and the output regions of the cell - at least when referring to VS-cells. Such spatial separation within a single cell took the scientists by surprise. However, as far as the fly is concerned, it is a very useful attribute. Model simulations demonstrated that a network that is comprised of such "double input cells" can process visual motion information much more efficiently.

Step by step approach

"With these results, the VS-cell network is now one of the best understood circuits in the fly's nervous system", Alexander Borst recapitulates the group's work of the last few years. The scientists' next goal is to ascertain whether a malfunction of the VS network has any direct bearing on the fly's flight skills. "For when it comes down to influencing a certain pattern of behaviour, cells and networks that were not taken into account up to now may gain importance", Borst speculates. Little by little, the scientists thus approach ever more complex networks until, one day, we can hopefully also comprehend human visual processing - right down to the single nerve cell.

Original work:

Yishai M. Elyada, Jürgen Haag, Alexander Borst

Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Nature Neuroscience, February 8th, 2009

Dr. Stefanie Merker | EurekAlert!
Further information:
http://www.mpg.de

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>