Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells derived from debrided burn tissue may be useful for tissue engineering

12.07.2012
A research team in the Netherlands has found that cells from burn eschar, the non-viable tissue remaining after burn injury and normally removed to prevent infection, can be a source of mesenchymal cells that may be used for tissue engineering. Their study compared the efficacy of those cells to adipose (fat)-derived stem cells and dermal fibroblasts in conforming to multipotent mesenchymal stromal cell (MSC) criteria.
Their study is published in the current issue of Cell Transplantation (21:5), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"In this study we used mouse models to investigate whether eschar-derived cells fulfill all the criteria for multipotent mesenchymal stromal cells as formulated by the International Society for Cellular Therapy (ISCT)," said study co-author Dr. Magda M.W. Ulrich of the Association of Dutch Burn Centres, The Netherlands. "The study also assessed the differentiation potential of MSCs isolated from normal skin tissue and adipose tissue and compared them to cells derived from burn eschar."

According to the researchers, advances in burn treatment have meant that the percentage of patients surviving severe burn injuries is increasing. This escalating survival rate has also increased the number of people who are left with burn scars, which lead to functional problems with the skin, such as contracture, and the social and psychological aspects of disfigurement.

Tissue engineering to rebuild the skin is the most promising approach to solving these problems. However, two problems arise with tissue engineering – the source of the cells and the design of the scaffold aimed at creating a microenvironment to guide cells toward tissue regeneration.

"The choice of cells for skin tissue engineering is vital to the outcome of the healing process," said Dr. Ulrich. "This study used mouse models and eschar tissues excised between 11 and 26 days after burn injury. The delay allowed time for partial thickness burns to heal, a process that is a regular treatment option in the Netherlands and rest of Europe."

The researchers speculated that during this time the severely damaged tissues could attract stem cells from the surrounding tissues, as elevated levels of MSCs have been detected in the blood of burn victims.

"MSCs can only be beneficial to tissue regeneration if they differentiate into types locally required in the wound environment," noted Dr. Ulrich. "We concluded that eschar-derived MSCs represent a population of multipotent stem cells. The origin of the cells remains unclear, but their resemblance to adipose-derived stem cells could be cause for speculation that in deep burns the subcutaneous adipose tissue might be an important stem cell source for wound healing."

The researchers concluded that more research is needed to identify the origins of the stem cells they found in burn eschar, their possible link to myofibroblasts, and how their function is influenced by the wound environment.

"This study demonstrates that the body's attempts to heal itself frequently require additional help to maximize the impact of these efforts," said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation. "Enhancing the endogenous production of MSCs, or transplantation of exogenous cells following burn injury, could prove useful in the remodeling of burnt tissue. Determining the original source of the cells is likely to be an important factor in developing an autologous (or otherwise) therapy."

Contact: Dr. Magda M.W. Ulrich, Association of Dutch Burn Centres, Postus 1015, 1940 EA Beverwijk, The Netherlands.
Tel. +31 251275506
Fax. + 0031 251264948
Email mulrich@burns.nl
Citation: van der Veen, V. C.; Vlig, M.; van Milligen, F. J.; de Vries, S. I.; Middelkoop, E.; Ulrich, M. M. W. Stem Cells in Burn Eschar. Cell Transplant. 21(5):933-942; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Shinn- Camillo Ricordi, MD at ricordi@miami.edu or Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>