Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How many cells can our Blood tolerate?

14.06.2012
Bioinformaticians of Jena University calculated the optimal value of hematocrit with the help of Einstein‘s equation
When people say “Blood is thicker than water,“ they are literally right. Because nearly half of the ‘life liquid’ consists of solid components. The red blood cells form the greatest part of it – all in all around 40 percent of the blood. They contain the red pigment hemoglobin and are responsible for the transport of oxygen.

“It is amazing that the percentage of this component is not only similar in all human beings but also in many other vertebrates,” Prof. Dr. Stefan Schuster of the Friedrich Schiller University Jena (Germany) says. Therefore it can be assumed that this value represents an optimum established by evolution. “If there was a lower volumetric content of blood cells, less oxygen would be transported,” the chair of Bioinformatics of the Biological Pharmaceutical Faculty says. “If there was a higher content, the oxygen transport would be increased. But as the blood would then be more viscous, the speed of transport would go down at the same time.”
As Prof. Schuster and his colleague Dr. Heiko Stark have just found out, the optimal value of hematocrit – which indicates the volume fraction of the red blood cells – can be calculated with an equation that dates from no less a person than Albert Einstein. The ingenious scientist engaged himself not only in the theory of relativity and quantum physics but also in the viscosity of liquids. ”There are already a number of theoretical attempts for calculating the optimal hematocrit value in specialist literature,” Schuster says. The Bioinformaticians of Jena University tried to find out which of those equations would be best suited to express the dependence of the viscosity on the liquid (blood) of the volume of the particles (blood cells) and struck lucky with Einstein. The Jena scientists published their results in the latest edition of the science magazine “Journal of Applied Physiology“(DOI: 10.1152/japplphysiol.00369.2012).

According to this the viscosity of a liquid is dependent on the viscosity of the solvent and the percentage volume of their solid components. Moreover Einstein‘s equation also has the factor 2.5. “If you apply a modification of this equation suggested by Arrhenius to the equation describing the speed of transport and establish the maximum, you obtain the optimum of exactly 40 percent,“ Dr. Stark says and calculates: 1 divided by 2.5 equals 0.4 or 40 percent. Therefore the normal hematocrit of human beings seems to be optimal from the point of view of fluid dynamics as well. This would also explain why the same value can be found in many animal species like for instance in lions, antelopes, goats, elephants and rabbits.

In their article the Bioinformaticists listed the experimentally calculated hematocrit values of a total of 57 species of vertebrates from the literature. “However there are some aberrations from the optimum,“ Stark points out. The hematocrit of seals for instance is considerably higher with 63 percent. “Additional criteria might apply in this case.“ Marine mammals for instance need a bigger capacity to store oxygen as they dive for long periods of time.

With their results the Jena scientists also question the illegal practice of blood doping in sports: This means trying to raise the concentration of the oxygen transporting hemoglobin in the blood and thereby trying to increase the athlete’s performance. This leads to an artificial increase of the hematocrit value. “This is not only a criminal offence, but at the same time its physiological effect is highly questionable according to our calculations“, Prof. Schuster summarizes.

Original Publication:
H. Stark, S. Schuster, Comparison of various approaches to calculating the optimal hematocrit in vertebrates, J. Appl. Physiol. 2012, DOI: 10.1152/japplphysiol.00369.2012

Contact:
Prof. Dr. Stefan Schuster, Dr. Heiko Stark
Chair of Bioinformatics
Friedrich Schiller University Jena
Ernst-Abbe-Platz 2, D-07743 Jena
Germany
Phone: ++49 3641 949580, ++49 3641 949584
Email: stefan.schu[at]uni-jena.de, heiko[at]starkrats.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/

More articles from Life Sciences:

nachricht Many cooks don't spoil the broth: Manifold symbionts prepare their host for any eventuality
14.10.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Diagnostics for everyone
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>