Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell energy sensor mechanism discovered

22.02.2012
Studies linked to better understanding of cancer drugs

Johns Hopkins and National Taiwan University researchers have discovered more details about how an energy sensing "thermostat" protein determines whether cells will store or use their energy reserves.

In a report in the Feb. 9 edition of Nature, the researchers showed that a chemical modification on the thermostat protein changes how it's controlled. Without the modification, cells use stored energy, and with it, they default to stockpiling resources. When cells don't properly allocate their energy supply, they can die off or become cancerous. The Johns Hopkins team focused especially on enzymes that add or remove so-called acetyl groups from protein molecules.

"Understanding how cells are affected by adding acetyl groups to proteins, particularly those involved in energy use, is important because there is increasing use of drugs that block acetyl-removing enzymes for treatment of cancer and neurodegenerative diseases," says Jef Boeke, Ph.D., professor of molecular biology, genetics and oncology, and director of the High Throughput Biology Center at the Johns Hopkins University School of Medicine. "Blocking acetyl-removing enzymes turns on anticancer genes that help fight cancer; however, it is not known what other genes and cellular processes may also be affected by these treatments."

To determine which enzymes remove acetyl chemical groups from which proteins, the researchers engineered human cells with reduced levels of each of 12 enzymes known to remove acetyl chemical groups. In each of these cell lines, they then turned down each of about 20,000 genes and used a DNA "chip" to identify which genes were affected by reduced levels of the acetyl-removing enzymes. The DNA chip highlighted a specific interaction between the thermostat protein, AMP-activated protein kinase (AMPK), and one of the acetyl-removing enzymes, HDAC1.

With less HDAC, AMPK was turned "off," presumably because it retains its acetyl group, the researchers concluded. AMPK acts like an energy thermostat because when energy levels are low in the cell, AMPK kick-starts processes that use the cell's energy reserves and cuts off reactions that store energy. On the other hand, when the cell has plenty of energy, AMPK turns off, causing energy in the form of sugar and fats being stored for later use.

Because the HDAC1 protein turned on AMPK, the researchers presumed there would be a corresponding acetyl-adding enzyme to specifically turn off AMPK. To find this enzyme, they extracted AMPK protein from eight different cell lines, each with reduced levels of a type of acetyl-adding enzyme. They found that AMPK in cells with reduced levels of this acetyl-adding enzyme, called p300, was less acetylated than in cells containing normal amounts of p300.

To confirm the idea that adding or removing acetyl groups directly affects how AMPK controls the way the cell uses energy, they measured the cell's energy stores with the help of a dye that accumulates in the fat globules of a cell. The dye let them estimate the size of fat globules that store energy. The cells unable to add acetyl to AMPK contained less of the dye and therefore smaller fat globules compared to normal human cells. Conversely, the cells unable to remove acetyl groups from AMPK contained more of the dye, indicating bigger fat globules. The research team concluded that when AMPK contains acetyl groups the cell uses less of its energy reserves than when AMPK does not contain acetyl groups.

Boeke says the work on human cells followed similar studies on yeast energy proteins done earlier in his laboratory.

Additional authors of the study include Yu-yi Lin, Shang-Yun Liu and Yi-hsuan Chou of the National Taiwan University; Jin-ying Lu of the National Taiwan University Hospital; Chin Ni Khnor and Chi-Long Lin of Academia Sinica, Taipei, Taiwan; Samara Kiihl and Rafael Irizarry of the Johns Hopkins University Bloomberg School of Public Health; and Yasir Suhail, Zheng Kuang and Joel Bader of the Johns Hopkins University School of Medicine.

The study was supported by funds from National Science Council grants, National Taiwan University Frontier and Innovative Research, National Taiwan University Excellent Translational Medicine Research Project, a National Health Research Institutes Career Development grant, the Liver Disease Prevention and Treatment Research Foundation and a National Institutes of Health Common Fund grant.

Related Stories: Hopkins Scientists Turn on Fountain of Youth in Yeast: http://www.hopkinsmedicine.org/news/media/releases/hopkins_scientists_turn_on

_fountain_of_youth_in_yeast

Jef Boeke of Molecular Biology and Genetics and the HiT Center on microarrays 101 and scientific nomenclature: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_us

/scientists/jef_boeke.html

Johns Hopkins Researchers Find Link Between Cell's Energy Use and Genome Health: http://www.hopkinsmedicine.org/Press_releases/2006/07_21a_06.html

On the Web: Jef Boeke's lab: http://www.bs.jhmi.edu/MBG/boekelab/

The High Throughput Biology Center: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/research

_centers/high_throughput_biology_hit/

Department of Molecular Biology and Genetics: http://www.mbg.jhmi.edu/Pages/index.aspx

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>