When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.
In malignant tumours, the cells usually proliferate quickly and uncontrollably. A research team from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, has discovered that two important regulators of cell division can interact in this process.
If this is the case, affected patients have particularly poor chances of survival. A special form of lung cancer was investigated.
The JMU team led by Professor Stefan Gaubatz and Dr. Grit Pattschull from the Chair of Biochemistry and Molecular Biology II analysed the activities of the protein YAP and the protein complex MMB (Myb-MuvB).
According to the researchers, the former protein is only able to initiate cell division when it interacts with a subunit of the MMB complex. The molecular details of these processes are currently described in the journal Cell Reports.
"Our results show for the first time that there is a connection between these two cancer-relevant signalling pathways," said Professor Gaubatz. If this connection can be broken, this could possibly be applied for cancer therapy.
Next, the JMU research team will investigate the exact details of the interaction between YAP and the MMB protein complex. In particular, the researchers hope to identify further proteins that are involved in the interaction of the two signalling pathways. The long-term goal is to suppress tumour growth by blocking the interaction.
This work was financially supported by the German Cancer Aid, among others.
Prof. Dr. Stefan Gaubatz, Biocenter of the University of Würzburg, T +49 931 31-84138, stefan.gaubatz@biozentrum.uni-wuerzburg.de
Pattschull, Grit et al.: "The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes", Cell Reports, 18 June 2019, DOI: 10.1016/j.celrep.2019.05.071
Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de
Further reports about: > Cell > Julius-Maximilians-Universität > Molecular Biology > cancer therapy > cell division > lung > lung cancer > malignant tumours > protein complex > tumour > tumour growth
New technique to determine protein structures may solve biomedical puzzles
11.12.2019 | Dana-Farber Cancer Institute
NTU Singapore scientists convert plastics into useful chemicals using su
11.12.2019 | Nanyang Technological University
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...
University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making
In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
11.12.2019 | Materials Sciences
11.12.2019 | Information Technology
Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise
11.12.2019 | Life Sciences