Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell discovery opens new chapter in drug development

10.09.2009
British scientists have uncovered new details about how the cells in our bodies communicate with each other and their environment: findings that are of fundamental importance to human biology.

Cells 'talk' to each other through a complex process called 'signalling'. When these signals go wrong, it can lead to all kinds of diseases, including cancer, diabetes and arthritis, to name but a few.

Scientists have long been able to see how cells send and receive signals at their outer skins, or membranes, but much of what happens afterwards has not been fully understood. As a result, many drugs on the market work without scientists knowing precisely how or what consequences they have for cell function.

Researchers at The University of Manchester in England have now developed a technique that will allow scientists to understand how these signals pass from the cell membrane into the cell itself, triggering a complex set of biological processes that have never been fully understood.

The research, published in the prestigious journal Science Signaling, will spark intense interest among the global scientific community, as they will hopefully lead to better drug design and faster drug delivery times. In addition, the findings will also provide biologists with a completely new insight into how our bodies work.

"Cell signalling is a fundamental biological process that is essential for life and when it goes wrong, disease results," said Professor Martin Humphries, lead researcher on the project and Dean of Manchester's Faculty of Life Sciences.

"Signals allow cells to 'taste' their environment in a similar fashion to how we taste food and drink. As an analogy, red wines have subtly different flavours, comprising a combination of hints of berries, oak, tobacco and liquorice. The same is true for cells that taste the thousands of molecules that make up their immediate environment.

"Our findings explain how cells might interpret these various flavours at a molecular level to generate an overall signal or taste. To do this, we have developed a technique that will allow scientists to examine how the receptors on the surface of cells pass information to the hundreds of proteins inside the cell that create the signal. Uniquely, our findings will allow scientists to look at all these hundreds of components at the same time."

The team's findings will finally allow scientists to observe how drugs work at an intracellular level, which will allow them to fully understand how they interact with the hundreds of cell receptors at the same time and what side-effects they are likely to produce.

Professor Humphries added: "Our findings will be of great interest to scientists and pharmaceutical companies as they open up new avenues for drug development and testing."

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>