Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell atlas of the aging lung

27.02.2019

Aging promotes lung function decline and increases susceptibility to diseases of the respiratory tract. In order to understand these effects in detail, researchers at Helmholtz Zentrum München, a partner in the German Center for Lung Research (DZL), analyzed the aging process in the lung at single-cell level using AI approaches. They have now presented this Atlas of the Aging Lung in ‘Nature Communications’.

The lung is a highly complex organ in which a great number of very different cells have to work together to enable normal breathing and protection against infection. If a human lung with all its branches was spread out on the ground, it would cover an area of about 70m².


Multi-omics analysis of lung aging

© Helmholtz Zentrum München

When one then considers that the cells are only a few thousandths of a millimeter in size and are composed of about 40 different, highly specialized cell types, one can begin to understand the complexity involved in investigating processes that affect the entire lung. However, advances in technology have opened up new possibilities in this field for scientists.

“For the current study, we analyzed changes between young and aging lungs down to the single-cell level in a preclinical model,” explains Dr. Herbert Schiller. He is a DZL young investigator group leader at the Institute of Lung Biology and Diseases at Helmholtz Zentrum München and led the study together with Prof. Fabian Theis, Director of the Institute for Computational Biology.

“This was made possible thanks to new single-cell analysis techniques. We were thus able to pinpoint gene activity in the individual lung cells and ascribe it to the changes in the corresponding gene products – i.e. to the proteins,” Dr. Schiller explains.*

In order to meaningfully collate and interpret all this data, the team relied on AI approaches: “The sheer mass of data is hard for humans to analyze. That’s why we develop algorithms to help us to recognize the structure of the data and the biological regulations hidden within it,” Fabian Theis notes.

The study showed that, with increasing age, the genes in the cells no longer behaved in a synchronized manner. “Whereas in younger lungs a particular cell type will control the gen activity very precisely, the gene activity of older lung cells, and thus also their identity, is less constant,” Herbert Schiller explains.

The scientists are working on the assumption that cells lose epigenetic control during the aging process, which results in different gene activities. Moreover, they demonstrated that certain metabolic pathways in lung cells are altered with increasing age.

But changes also occur outside the cells: “The structure of the so-called extracellular matrix – in other words, the network of proteins surrounding the cells – changes with age,” Schiller explains. “This can, for example, alter the composition of the structural proteins known as collagens.”

The scientists now hope to collaborate with their international peers in order to verify the findings of their current study in the human body. “Lung diseases account for every sixth death worldwide,” Herbert Schiller notes. “In order to counter them, we must understand how the lung changes in the course of a lifetime and identify areas where therapeutic intervention may be possible.”

Further information

* Specifically, the scientists used single-cell transcriptomics and a proteomic mass spectrometry method to measure changes in 30 different pulmonary cell types.

Background:
The current study is also a pioneering project for the Human Cell Atlas (HCA). This is a sort of Google maps of the human body, the purpose of which is to chart all the cells and tissues at different times to build a reference database of the normal healthy condition, which promises tremendous importance for the development of personalized medicine.

Fabian Theis plays a leading role in this, and Herbert Schiller focuses specifically on lung-related issues within the HCA consortium and has also co-authored the corresponding white paper for the Human Cell Atlas. In the next phase, the relevant data for human cells will have to be collected and integrated in the project in order to advance progress in basic and applied research.

“Our study provides the first such dataset of this magnitude for lung cells,” Herbert Schiller explains. To make the data available to the community, the scientists have created an online web tool that will give their colleagues in this specialized field free access to the data: https://theislab.github.io/LungAgingAtlas

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes, allergies and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL). http://www.helmholtz-muenchen.de/ilbd

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association’s head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care. http://www.dzl.de/index.php/en

Contact for the media:
Communication Department, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Wissenschaftliche Ansprechpartner:

Dr. Herbert Schiller, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Max-Lebsche-Platz 31, 81377 München - Tel. +49 89 3187 1194 - E-mail: herbert.schiller@helmholtz-muenchen.de

Originalpublikation:

Angelidis, I. & Simon L.M. et al. (2019): An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nature Communications, DOI: 10.1038/s41467-019-08831-9

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CPC Helmholtz diseases lung lung cells lung diseases proteins

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>