Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching the blood cell bus gives fatal yeast infection a clean getaway

09.09.2008
Yeast fungus cells that kill thousands of AIDS patients every year escape detection by our bodies' defences by hiding inside our own defence cells, and hitch a ride through our systems before attacking and spreading, scientists heard today (Tuesday 9 September 2008) at the Society for General Microbiology's 163rd meeting being held this week at Trinity College, Dublin.

Cells of the Cryptococcus yeast responsible for one of the three most life-threatening infections that commonly attack HIV infected patients, causing cryptococcal meningitis, are using a previously unknown way to avoid detection, according to scientists from the University of Birmingham, UK.

"We have shown that these airborne yeast cells can hide inside our bodies' own white blood cells, called macrophages, and then use them as vehicles to travel around inside our bodies, using them just like a bus," said Miss Hansong Ma of the University of Birmingham. "The yeast cells then escape from inside the macrophages when they arrive at the right destination - but importantly, they do this without killing the macrophage, which would trigger alarm bells."

When a host's cells are invaded by bacteria, fungi or viruses the invaders usually use the opportunity to multiply inside the cells and escape by bursting out, killing the host and releasing thousands of copies of the pathogen to attack other cells. The death of the host cell releases debris and by-products which usually triggers our bodies into mounting an immune response, causing inflammation.

"This new method of remaining inside the host cells means that the pathogen can spread more efficiently round our bodies and is protected from the natural defences in our bloodstream that would normally kill the yeast or other invader," said Hansong Ma. "Yeast cells avoid killing or damaging the macrophages. They leave by a method that we call 'vomocytosis'; the yeast cells are acting like spies rather than terrorists, and go unnoticed, giving them more time to establish an infection."

Although the use of antiretroviral drugs is cutting the number of AIDS patients with Cryptococcus infections there is still a major epidemic in Southeast Asia and Africa. Up to 30% of AIDS patients there are infected, and up to 44% will die from the disease within 8 weeks. Even in the USA or European countries like France where antiretroviral drug treatments are readily available, one in ten infected patients will die.

"We badly need to better understand the interaction between hosts, viruses and attacking pathogens like the yeast fungus to help us find new drug targets and so design new ways to treat these patients," said Hansong Ma.

"We used time-lapse microscope photography to identify this new escape mechanism, and watched the yeast cells escaping into the fluid surrounding cells or, remarkably, directly into other host cells through cell-to-cell transmission, continuing to avoid detection by using this extremely rapid vomocytosis," said Hansong Ma. "Worryingly, this enables the cryptococci to avoid antifungal drugs and other treatments as well as our normal immune system, and may allow the yeast to become latent, achieving a long-term infectious state which could then be spread even further, to other individuals, without anyone realising."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>