Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Optimizing water splitting

01.10.2012
Computer simulations of a metal–sulfide alloy unlock the secrets to designing solar-powered catalysts that generate hydrogen fuel from water
Partnerships can pay off when it comes to converting solar into chemical energy. By modeling a cadmium sulfide (CdS)–zinc sulfide (ZnS) alloy with special computational techniques, a Singapore-based research team has identified the key photocatalytic properties that enable this chemical duo to ‘split’ water molecules into a fuel, hydrogen gas (H2). The theoretical study was published by Jianwei Zheng from the A*STAR Institute of High Performance Computing and his co-workers.

Chemists had already identified CdS and ZnS semiconductors as promising photocatalysts for water splitting. However, both came with a drawback related to the size of their so-called ‘band gap’ — the energy difference between occupied and unoccupied electronic states that determine photo-activity. While CdS can readily harvest solar energy because of its small band gap, it needs a metal co-catalyst to produce H2. On the other hand, ZnS requires high-energy ultraviolet light to initiate water splitting owing to its large band gap.

Recently chemists had overcome these problems by alloying CdS and ZnS together into a ‘solid solution’: a physical state where Zn ions are distributed homogenously inside the crystal lattice of CdS. Altering the proportion of ZnS in these alloys enables production of photocatalysts with tunable responses to visible light and high H2 evolution rates in water. Improving the design of a Cd–ZnS solid solution is difficult, because its underlying mechanism is poorly understood.

As a workaround, Zheng and his co-workers used a technique known as ‘special quasi-random structures’ (SQS) to mimic a completely random alloy with a series of small, periodic models. After carefully working to correlate experimental random hexagonal crystals with their SQS approximations, they calculated the electronic properties of the Cd–ZnS solid solution using hybrid density functional theory — a computational method that gives accurate descriptions of band gaps.

When the researchers gradually increased the Zn content of their model alloy, they saw that the band gap deviated from a linear combination of the two components. This effect, known as band ‘bowing’, arises from volume deformations within the Cd–ZnS solid solution and is an essential parameter for predicting catalytic solar H2 production.

Further calculations revealed that the alloy’s high catalytic activity stemmed from obvious elevation of the position of unoccupied electronic states, and a subtle change in the position of occupied electronic states, as the amount of Zn increased. But to retain strong light harvesting capabilities and to avoid premature corrosion, the team proposes an equal ratio of ZnS to CdS for optimal photocatalytic water splitting.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References:

Wu, J.-C., Zheng, J.-W., Zacherl, C. L., Wu, P., Liu, Z.-K. & Xu R. Hybrid functionals study of band bowing, band edges and electronic structures of Cd1–xZnxS solid solution. Journal of Physical Chemistry C 115, 19741–19748 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>