Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnivorous plant throws out 'junk' DNA

13.05.2013
The newly sequenced genome of the carnivorous bladderwort contradicts the notion that vast quantities of noncoding DNA are crucial for complex life

Genes make up about 2 percent of the human genome. The rest consists of a genetic material known as noncoding DNA, and scientists have spent years puzzling over why this material exists in such voluminous quantities.


A scanning electron micrograph shows the bladder of Utricularia gibba, the humped bladderwort plant (color added). The plant is a voracious carnivore, with its tiny, 1-millimeter-long bladders leveraging vacuum pressure to suck in tiny prey at great speed. New research shows that the U. gibba genome contains almost no noncoding DNA, demonstrating that vast quantities of this so-called "junk DNA" may not be necessary for complex life.

Credit: Enrique Ibarra-Laclette, Claudia Anahí Pérez-Torres and Paulina Lozano-Sotomayor


This is the light micrograph of the bladder of the carnivorous bladderwort plant, Utricularia gibba. A new study finds that U. gibba has a remarkable genome for a complex organism. Just 3 percent of U. gibba 's tiny genome is made from so-called "junk DNA," compared with about 98 percent of the human genome. The finding contradicts the notion that vast quantities of noncoding junk DNA are crucial for complex life.

Credit: Enrique Ibarra-Laclette and Claudia Anahí Pérez-Torres

Now, a new study offers an unexpected insight: The large majority of noncoding DNA, which is abundant in many living things, may not actually be needed for complex life, according to research set to appear in the journal Nature.

The clues lie in the genome of the carnivorous bladderwort plant, Utricularia gibba.

The U. gibba genome is the smallest ever to be sequenced from a complex, multicellular plant. The researchers who sequenced it say that 97 percent of the genome consists of genes — bits of DNA that code for proteins — and small pieces of DNA that control those genes.

It appears that the plant has been busy deleting noncoding "junk" DNA from its genetic material over many generations, the scientists say. This may explain the difference between bladderworts and junk-heavy species like corn and tobacco — and humans.

The international research team, led by the Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) in Mexico and the University at Buffalo, will report its findings on May 12 in Advanced Online Publication in Nature, and the information in this press release is embargoed until 1 p.m. U.S. Eastern Time on May 12.

The study was directed by LANGEBIO Director and Professor Luis Herrera-Estrella and UB Professor of Biological Sciences Victor Albert, with contributions from scientists in the United States, Mexico, China, Singapore, Spain and Germany.

"The big story is that only 3 percent of the bladderwort's genetic material is so-called 'junk' DNA," Albert said. "Somehow, this plant has purged most of what makes up plant genomes. What that says is that you can have a perfectly good multicellular plant with lots of different cells, organs, tissue types and flowers, and you can do it without the junk. Junk is not needed."

Noncoding DNA is DNA that doesn't code for any proteins. This includes mobile elements called jumping genes that have the ability to copy (or cut) and paste themselves into new locations of the genome.

Scientists have spent countless hours puzzling over why noncoding DNA exists — and in such copious amounts. A recent series of papers from ENCODE, a highly publicized international research project, began to offer an explanation, saying that the majority of noncoding DNA (about 80 percent) appeared to play a role in biochemical functions such as regulation and promotion of DNA conversion into its relative, RNA, which for genes, feeds into the machinery that makes proteins.

But Herrera-Estrella, Albert and their colleagues argue that organisms may not bulk up on genetic junk for reasons of benefit.

Instead, they say, some species may simply have an inherent, mechanistic bias toward deleting a great deal of noncoding DNA while others have a built-in bias in the opposite direction — toward DNA insertion and duplication. These biases are not due to the fact that one way of behaving is more helpful than the other, but because there are two innate ways to behave and all organisms adhere to them to one degree or the other. The place that organisms occupy on this sliding scale of forces depends in part on the extent to which Darwin's natural selection pressure is able to counter or enhance these intrinsic biases.

The new U. gibba genome shows that having a bunch of noncoding DNA is not crucial for complex life. The bladderwort is an eccentric and complicated plant. It lives in aquatic habitats like freshwater wetlands, and has developed corresponding, highly specialized hunting methods. To capture prey, the plant pumps water from tiny chambers called bladders, turning each into a vacuum that can suck in and trap unsuspecting critters.

The U. gibba genome has about 80 million DNA base pairs — a miniscule number compared to other complex plants — and the deletion of noncoding DNA appears to account for most of that size discrepancy, the researchers say. U. gibba has about 28,500 genes, comparable to relatives like grape and tomato, which have much larger genomes of about 490 and 780 million base pairs, respectively.

The small size of the U. gibba genome is even more surprising given the fact that the species has undergone three complete genome doublings since its evolutionary lineage split from that of tomato.

That is, at three distinct times in the course of its evolution, the bladderwort's genome doubled in size, with offspring receiving two full copies of the species' entire genome. "This surprisingly rich history of duplication, paired with the current small size of the bladderwort genome, is further evidence that the plant has been prolific at deleting nonessential DNA, but at the same time maintaining a functional set of genes similar to those of other plant species" says Herrera-Estrella.

Besides LANGEBIO and UB, institutions with researchers contributing to the study included: University of Arizona, Tucson; Universidad de Guanajuato, Irapuato; Chongqing University of Science and Technology; Departamento de Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Universidad Veracruzana; Michigan State University; Universidad de Guadalajara, Ocotlán; Pennsylvania State University; Nanyang Technological University; Centre for Genomic Regulation in Barcelona; Universitat Pompeu Fabra; Max Planck Institute for Molecular Genetics; Indiana University; Rutgers University; and the Donald Danforth Plant Science Center.

The study was supported by CONACyT (Mexico), Howard Hughes Medical Institute, the University at Buffalo College of Arts and Sciences and the National Science Foundation.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>