Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnitine supplements reverse glucose intolerance in animals

14.08.2009
Supplementing obese rats with the nutrient carnitine helps the animals to clear the extra sugar in their blood, something they had trouble doing on their own, researchers at Duke University Medical Center report.

A team led by Deborah Muoio (Moo-ee-oo), Ph.D., of the Duke Sarah W. Stedman Nutrition and Metabolism Center, also performed tests on human muscle cells that showed supplementing with carnitine might help older people with prediabetes, diabetes, and other disorders that make glucose (sugar) metabolism difficult.

Carnitine is made in the liver and recycled by the kidney, but in some cases when this is insufficient, dietary carnitine from red meat and other animal foods can compensate for the shortfall.

After just eight weeks of supplementation with carnitine, the obese rats restored their cells' fuel- burning capacity (which was shut down by a lack of natural carnitine) and improved their glucose tolerance, a health outcome that indicates a lower risk of diabetes.

These results offer hope for a new therapeutic option for people with glucose intolerance, older people, people with kidney disease, and those with type 2 diabetes (what used to be called adult-onset diabetes).

Muoio said that soon her team of researchers will begin a small clinical trial of carnitine supplementation in people who fit the profile of those who might benefit from additional carnitine – older people (60 to 80 years) with glucose intolerance.

The study is published in the Aug. 21 issue of the Journal of Biological Chemistry.

The Duke researchers began studying carnitine more closely when abnormalities in the nutrient emerged from blood chemistry profiles of obese and old animals. These chemical profiles report on hundreds of byproducts of cell metabolism called metabolites and give scientists an opportunity to identify markers of disease states.

Carnitine is a natural compound known for helping fatty acids enter the mitochondria, the powerhouses of cells, where fatty acids are "burned" to give cells energy for their various tasks. Carnitine also helps move excess fuel from cells into the circulating blood, which then redistributes this energy source to needier organs or to the kidneys for removal. These processes occur through the formation of acylcarnitine molecules, energy molecules that can cross membrane barriers that encase all cells.

Researchers at Duke had observed that skeletal muscle of obese rats produced high amounts of the acylcarnitines, which requires free carnitine. As these molecules started to accumulate, the availability of free, unprocessed carnitine decreased. This imbalance was linked to fuel-burning problems, that is, impairments in the cells' combustion of both fat and glucose fuel.

"We suspected that persistent increases in acylcarnitines in the rats were causing problems, and we could also see that the availability of free carnitine was decreasing with weight gain and aging," said Muoio. "It appeared that carnitine could no longer do its job when chronic metabolic disruptions were stressing the system. That's when we designed an experiment to add extra carnitine to the rats' diet."

Muoio is also a professor in the departments of medicine, pharmacology and cancer biology.

Other study authors included Robert C. Noland, Sarah E. Seiler, Helen Lum, Olga Ilkayeva, Robert Stevens, and Timothy R. Koves of the Sarah W. Stedman Nutrition and Metabolism Center. Koves is also with the Duke Department of Medicine. Robert M. Lust is with the Department of Physiology at East Carolina University in Greenville, N.C., and Fausto G. Hegardt is with the CIBER division Fisiopatología de la Obesidad y la Nutrición of the Instituto de Salud Carlos III in Spain.

The work was supported by grants from the National Institutes of Health, and the American Diabetes Association, and a John A. Hartford Duke Center for Excellence Award.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>