Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon Scientists Track Neuronal Stem Cells Using MRI

30.09.2011
Patented MRI Reporter Technology Could Inform Treatment for Brain Injury and Neurological Disease

Carnegie Mellon University biologists have developed an MRI-based technique that allows researchers to non-invasively follow neural stem cells in vivo.

The recently patented technology could be used to further the study of neural stem cells and inform the development of new treatments for brain injury caused by trauma, stroke, Parkinson’s disease and other neurological disorders. The findings, authored by Associate Professor of Biological Sciences Eric Ahrens and Biological Sciences postdoctoral student Bistra Iordanova, are published online in the journal NeuroImage.

Legend had it that once a brain cell dies, it’s lost forever. Neuroscientists now know that this is purely myth, having proved that the brain is constantly producing new neurons. These neural stem cells are born deep in an area of the brain called the subventricular zone. As time goes on, the cells, also called neuroblasts, make their way to other areas of the brain where they mature into functioning neurons. The brain’s ability to regenerate its cells is of great interest to scientists.

“If we could better understand the molecular migratory signals that guide neuroblasts, we could try to redirect these cells to areas of the brain harmed by stroke or traumatic brain injury. With this information, scientists might be able to one day repair the brain,” said Ahrens, who also is a member of the Pittsburgh NMR Center for Biomedical Research.

Studying cells in a living brain is problematic. Common forms of in vivo cell imaging like fluorescence and bioluminescence rely on light to produce images, making them unsuitable for viewing neuroblasts buried deep beneath the skull and layers of opaque tissue. Until now, scientists had only been able to study neuronal stem cells by looking at slices of the brain under a microscope. Ahrens was able to surmount this problem using MRI technology.

Rather than light, MRI uses magnets to create high-resolution images. A typical MRI scan uses a magnetic field and radio frequency pulses to cause the hydrogen protons found in the body’s water molecules to give off signals. Those signals are converted into a high-resolution image.

At the foundation of this work is a technology Ahrens developed. As reported in a 2005 issue of Nature Medicine, Ahrens developed a method that causes cells to produce their own contrast agent allowing them to be imaged with MRI. Using a viral vector, Ahrens incorporated the gene that produces the naturally occurring metalloprotein ferritin into living cells. Ferritin, which is present in all biological cells, harvests and stores naturally occurring iron. When the cells tagged with ferritin began to produce increased amounts of the protein, they draw in additional iron, turning themselves into nanomagnets. This disrupts the magnetic field surrounding the tagged cells, changing the signal given off by adjacent water molecules. This change appears as dark spots on the MRI image indicating the cells' presence. Since then, Ahrens’ team has improved on the process, developing an engineered form of ferritin that is a more effective MRI reporter than naturally occurring ferritin.

In the current study, Iordanova and Ahrens used the same technique as in the initial study, this time tagging neuroblasts with the engineered ferritin. They incorporated the DNA sequence for the engineered metalloprotein into an adenovirus vector, which they then injected into the subventricular zone of a rat brain. The adenovirus infected the neural stem cells giving the cells the genetic instructions to begin producing the ferritin reporter. Iordanova then imaged the brain with MRI and found that she was able to follow — in real time — the neuroblasts as they traveled toward the olfactory bulb and ultimately formed new inhibitory neurons. These results mirrored what had been observed in histology studies.

Recently, Carnegie Mellon received a patent for the reporter. Ahrens hopes to continue to develop the technology in order to allow researchers to better understand neuronal stem cells and how neurons regenerate. Ahrens also plans to use the reporters to improve clinical trials of cell-based therapies. By incorporating the reporter into the cells before implantation, researchers would be able to find the answer to a number of critical questions.

“Where do these cells go, days, weeks and months later? How do we know that they’ve grafted to the right cells? Or have they grafted in the wrong place? Or died?” Ahrens asked. “The reporter can show us the answers.”

The National Science Foundation and National Institutes of Health funded this research.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university’s seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon’s main campus in the United States is in Pittsburgh, Pa. It has campuses in California’s Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled “Inspire Innovation: The Campaign for Carnegie Mellon University,” which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.cmu.edu/mcs/news/pressreleases/2011/09_27_NeuroblastReporter.html

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>