Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification

24.04.2012
Using a new fluorescent biosensor they developed, researchers at Carnegie Mellon University have discovered how a key set of immune cells exchange information during their coordinated assault on invading pathogens.

The immune cells, called dendritic cells, are harnessed by cancer vaccines and other therapeutics used to amplify the immune system. The finding, published online March 29 in the journal Angewandte Chemie, marks the first time that scientists have visualized how antigens are transferred in the immune system between dendritic cells.

"Knowing the mechanism behind what's going on in these dendritic cells — how they are talking to each other in order to amplify the immune response — is of fundamental significance," said Marcel P. Bruchez, associate professor of biological sciences and chemistry in the Mellon College of Science.

Dendritic cells are specialized immune cells that search for and capture foreign micro-organisms like bacteria, allergens or viruses. The cells engulf the invading organism and break it down into pieces. The dendritic cell then places these pieces, called antigens, on its cell surface.

When a dendritic cell presents antigens on its surface, it instructs other immune cells to multiply and scour the body in search of the harmful micro-organisms. Dendritic cells also can share antigens with other dendritic cells to boost immune cell activation. While scientists knew that antigens from one dendritic cell could show up in another dendritic cell, they didn't know how those antigens got there.

To determine the precise mechanism by which dendritic cells transfer antigens to each other, the research team used a new pH-biosensor developed at Carnegie Mellon's Molecular and Biosensor Imaging Center (MBIC). The biosensor is made up of two components: a fluorogen activating peptide (FAP), which is genetically expressed in a cell and tagged to a protein of interest, and a dye called a fluorogen, which either glows red or green depending on the pH level of its environment.

"All routes into the cell have characteristic pH profiles," Bruchez said. "Our pH-biosensor allows us to determine whether the tagged protein — in this case a surrogate antigen — is moving through neutral compartments into the cell, or through acidic compartments into the cell. Those sorts of things determine whether the antigen enters the cell through an active endocytic process, a phagocytic process, or a caveolar uptake process."

In the current study, researchers tagged a surrogate antigen on the surface of a dendritic cell with the FAP. They added the pH sensitive dye, causing the FAP antigen to glow green, an indication of a neutral pH. As the antigen and its bound dye passed to a separate dendritic cell, the antigen/FAP complex glowed red, indicating it used an acidic pathway to enter the new cell. This change in pH from neutral to acidic reveals that antigens are passed between cells through an active endocytic process.

"Once it's nibbled by the acceptor cell, the antigen goes through this endocytic pathway where it can potentially then be reprocessed and re-displayed on the surface of the receptor cell," Bruchez said.

The new biosensor's activity is novel, Bruchez said, because it binds to its target with nanomolar affinity, becomes fluorescently activated, and then is carried into the cell under endocytic conditions, reporting on the pH as it goes. The researchers are hopeful that this technology is the first in a platform of targetable environmental sensors. The current biosensor can read out pH, but this approach could be extended to measure calcium or other ion fluctuations in living cells. According to Bruchez, there are many ways that this basic chemical concept can be extended.

In addition to Bruchez, the authors include Anmol Grover, Brigitte F. Schmidt and Alan S. Waggoner from CMU's Molecular Biosensor and Imaging Center, and Russell D. Salter and Simon C. Watkins from the University of Pittsburgh School of Medicine, which has a longstanding program studying dendritic cell biology and vaccine design.

This research was funded by the National Institutes of Health (NIH). MBIC is one of the NIH's National Technology Centers for Networks and Pathways. For more information, visit: http://www.mbic.cmu.edu/.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.mbic.cmu.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>