Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cardiac Marker Copeptin accelerates Diagnosis of Acute Myocardial Infarction (AMI)

02.07.2009
The novel biomarker Copeptin can improve patient management in the Emergency Department (ED). The study "Incremental Value of Copeptin for Rapid Rule Out of Acute Myocardial Infarction (AMI)" was recently published in the Journal of the American College of Cardiology (JACC).

One of the major challenges in emergency medicine is the early diagnosis of Acute Myocardial Infarction (AMI) in patients presenting with chest pain or other symptoms suggestive of this disease. Until now Troponin is the most effective biomarker. According to study data, the combination of Troponin and Copeptin, a novel cardiac biomarker from BRAHMS Aktiengesellschaft, allows a rapid and reliable rule out of AMI right at the initial blood draw when the patient presents to the Emergency Department (ED).

Approximately 15 million patients present to the Emergency Department (ED) with symptoms suggestive of Acute Myocardial Infarction (AMI) every year. The vast majority (70 to 80%) of them finally prove not to have AMI. However, due to a delayed increase of circulating levels of Troponin it takes up to six hours before it can be measured. Therefore serial blood sampling is recommended by the European Guidelines. Study results indicate that by testing for both markers, along with an Electrocardiogram (ECG) and the clinical findings, approximately two-thirds of the patients would not need to wait those six hours in the ED for the second Troponin test. This may obviate the need for prolonged monitoring and serial blood sampling in the majority of patients.

"In the very situation of a patient presenting to the Emergency Department (ED) with symptoms suggestive of Acute Myocardial Infarction (AMI) the clinician quickly needs to know whether the person is in real danger or not. Ruling out AMI in this setting is an urgent and unmet need. The use of Copeptin together with Troponin can accelerate the rule out of AMI and thus improves patient management in the ED immensely. Two thirds of these patients may be ruled out with the first blood draw and most of them probably could leave the ED very soon," explained Dr. Tobias Reichlin from the Department of Internal Medicine at the University Hospital, Basel, Switzerland. While the concentration of Troponin rises four to six hours after the event of an AMI, concentrations of the new Copeptin biomarker are highest right after the onset of symptoms and then begin to drop. This difference makes the use of the combination of the two extremely promising.

The study was conducted in the University Hospital of Basel, Switzerland. In 487 consecutive patients presenting to the Emergency Department (ED) with symptoms suggestive of Acute Myocardial Infarction (AMI), the research team measured levels of copeptin at presentation, using a novel sandwich immunoluminetric assay in a blinded fashion. The final diagnosis was adjudicated by two independent cardiologists using all available data.

The adjudicated final diagnosis was Acute Myocardial Infarction (AMI) in 81 patients (17%). Copeptin levels were significantly higher in AMI patients compared with those in patients having other diagnoses (median 20,8 pmol/l vs. 6,0 pmol/l, p

Copeptin, the C-terminal part of the vasopressin prohormone, is a marker of acute endogenous stress. Arginine vasopressin (AVP) is a key hormone in the human body. Despite the clinical relevance of AVP in maintaining fluid balance and vascular tone, measurement of mature AVP is difficult and subject to preanalytical errors. Recently, Copeptin, a 39-amino acid glycopeptide that comprises the C-terminal part of the AVP precursor (CT-proAVP), was found to be a stable and sensitive surrogate marker for AVP release, analogous to C-peptide for insulin. Copeptin measurement has been shown to be useful in various clinical indications, including the diagnosis of diabetes insipidus and the monitoring of sepsis and cardiovascular diseases.

Copeptin is scheduled for fall introduction on the European market and joins a series of excellent BRAHMS biomarkers for cardiovascular diseases. The study results were already presented in a Late Breaking Clinical Trial Session at the ACC-Meeting in March. It marks the third time in just a few months that BRAHMS, with a new cardiac marker, succeeded in joining a Late Breaking Clinical Trial Session at a major cardiology congress.

The BRAHMS Aktiengesellschaft conducts researches, develops, produces and markets innovative diagnostic biomarkers. It is one of the three largest biotechnology companies in Germany. The company sells its products in more than 65 countries via its own subsidiary companies and sales organizations as well as laboratory systems from its own production and globally operating licensees. The headquarter of BRAHMS is at Hennigsdorf / Berlin, where about 220 out of 400 of the world wide employees of the company are posted.

Contact:
BRAHMS Aktiengesellschaft
Ingo Buchholzer
Public Relations Manager
Phone: +49 3302 883-637
Fax: +49 3302 883-635
Mobile: +49 172 323 4087
E-mail: i.buchholzer@brahms.de

Ingo Buchholzer | idw
Further information:
http://www.brahms.de

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>