Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbonic Acid—And Yet It Exists!

23.09.2014

Preparation and characterization of gas-phase carbonic acid and its monomethyl ester

Until fairly recently, scientists were convinced that carbonic acid (H2CO3) does not exist as a stable molecule. In the journal Angewandte Chemie, German researchers have now introduced a simple pyrolytic method for the production of gas-phase carbonic acid that allowed the spectroscopic characterization of gas-phase carbonic acid and its monomethyl ester.


Carbonic acid is a physiologically important molecule. For example, it helps maintain a constant pH value for blood and is an important intermediate in the formation of the carbon dioxide we exhale. It is also likely to play an essential role in CO2 sequestration technologies. There is also much evidence for the presence of solid carbonic acid in extraterrestrial ice, including on the surface of Mars, and in interstellar regions.

A team led by Peter R. Schreiner at the University of Giessen has now developed a novel and broadly applicable method for the production of gas-phase carbonic acid. Their technique is based on the pyrolysis of a readily available precursor molecule (Di-tert-butyl dicarbonate) in the gas phase.

The resulting carbonic acid is trapped in an extremely cold, noble gas matrix. By starting with a different precursor molecule, the researchers were able to extend their new pyrolysis technique to obtain gas-phase carbonic acid monomethyl ester for the first time.

Trapped in their icy matrix, the carbonic acid and carbonic acid monomethyl ester could be subjected to exhaustive infrared spectroscopic studies for the first time. Comparison of the data with theoretically calculated values showed excellent agreement.

The results of these experiments bring new insight into a matter of controversy concerning carbonic acid: are there really, as was proposed by several teams of researchers some time ago, two different crystalline forms of carbonic acid, the alpha and beta forms? Schreiner and his co-workers say this is not the case.

Their spectroscopic data agree perfectly with the vapor phase above the theoretical beta form, but not the vapor phase of the solid thought to be the alpha form of carbonic acid. However, the spectra of the carbonic acid monomethyl ester correspond beautifully to this supposed alpha-carbonic acid.

Says Schreiner: “It is clear that the molecule previously thought to be the alpha form of carbonic acid is actually the carbonic acid monomethyl ester.” This conclusion is in accord with the method used to prepare the “alpha form”, which uses methanol as a solvent under acidic conditions that favor an esterification reaction between carbonic acid and methanol.

“Our results shed new light on the gas-phase chemistry of carbonic acid,” says Schreiner. “They will be highly useful for the identification of carbonic acid in the environment and the atmosphere, as well as in astrophysical research.”

About the Author

Dr. Peter R. Schreiner is a Professor of Organic Chemistry at the University of Gießen. He and his research group are interested in understanding organic chemistry at its most fundamental level, including the preparation of previously unknown molecules, the use of hydrogen-bonding organocatalysts, and the development of the chemistry of nanodiamonds. He is an elected member of the German National Academy of Sciences (Leopoldina) and is the recipient of the Dirac Medal.

Author: Peter R. Schreiner, Justus-Liebig-Universität Giessen (Germany), http://www.uni-giessen.de/cms/fbz/fb08/Inst/organische-chemie/agschreiner

Title: Gas-Phase Preparation of Carbonic Acid and Its Monomethyl Ester

Angewandte Chemie International Edition Permalink to the original article: http://dx.doi.org/10.1002/anie.201406969 – Please use in your news piece to make sure altmetric.com picks it up and a link to your piece is shown on the journal's website.

Peter R. Schreiner | Angewandte Chemie

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>