Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing the Birth of a Synapse

28.05.2009
Researchers have identified the locking mechanism that allows some neurons to form synapses to pass along essential information. Mutations of genes that produce a critical cell-adhesion molecule involved in the work were previously linked to autism.

The discovery -- captured with fluorescent imaging of excitatory neurons harvested from rat pups shortly after birth and studied in culture as they continued to develop -- is described in a paper placed online May 18 ahead of formal publication in the open-access journal Neural Development.

"We've caught two neuronal cells in the act of forming a synapse," said principle investigator Philip Washbourne, professor of biology at the University of Oregon. He describes the cell-adhesion neuroligin proteins on the membranes of receptor neurons as "molecular Velcro."

The research team of six UO and University of California, Davis, scientists found one of many finger-like filopodia, or spines, that reach out from one neuron is nabbed by neuroligin molecules on the membrane of another neuron. In turn, neuroligins recruit at least two other key proteins (PSD-95 and NMDA receptors) to begin building a scaffold to hold the synapse components in place. The moment of locking is captured in a video (link below) that will appear with the paper's final version at the journal's Web site.

Two neuroligin family members (3 and 4) have been linked to autism in the last decade.

"Chemical synapses are the primary means for transmitting information from one neuron to the next," said Washbourne, who is a member of the UO's Institute of Neuroscience. "Synapses are initially formed during development of the nervous system, and formation of appropriate synapses is crucial for establishing neuronal circuits that underlie behavior and cognition. Minor irregularities can lead to developmental disorders such as autism and mental retardation, and they may contribute to psychological disorders."

The findings, he added, reflect a clearer understanding of how synapses form, providing a roadmap for research that someday may lead to new therapies or a cure for autism, a brain development disorder that affects a person's social and communication abilities. The disorder affects 1 in every 150 American children, according to the Autism Society of America.

The new window opened by Washbourne's team captures the essence of synapse development, which occurs over and over among the estimated 100 billion neurons that make some 100 trillion synapses in a single human being. That leaves a lot of room for errors in the DNA-driven instructions for synthesizing molecules responsible for synapse formation, Washbourne said.

"Basically," Washbourne said, "we have found mechanisms by which two very important molecules, NMDA and PSD-95, are brought to a newly forming synapse."

Co-authors with Washbourne were postdoctoral researches Stephanie L. Barrow and Eliana Clark at UC-Davis, A. Kimberley McAllister, a professor in the UC-Davis Center for Neuroscience, and John R.L. Constable, a postdoctoral researcher in Washbourne's UO lab. Constable is funded by a medical research fellowship provided by Oregon Health and Science University in Portland.

The National Institute of Neurological Disorders and Stroke (National Institutes of Health), the Florida-based non-profit Whitehall Foundation and New York-based Autism Speaks, the nation's largest autism science and advocacy organization, funded Washbourne's research. McAllister was funded by the Pew Charitable Trusts and National Eye Institute.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Philip Washbourne, assistant professor of biology, 541- 346-4138, pwash@uoneuro.uoregon.edu

Videos:
Synapse connection: http://www.neuraldevelopment.com/imedia/1289946488273731/supp3.avi

Comments from Washbourne: http://www.youtube.com/watch?v=b99T5PfT7jc

Links:
UO biology department: http://biology.uoregon.edu/
Washbourne Web page: http://www.neuro.uoregon.edu/ionmain/htdocs/faculty/washbourne.html
UO Institute of Neuroscience: http://www.neuro.uoregon.edu/
Journal paper: http://www.neuraldevelopment.com/content/4/1/17
McAllister faculty page: http://neuroscience.ucdavis.edu/user/9

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>