Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cannibal cells may limit cancer growth

11.07.2017

Cell cannibalism in tumour samples has been observed for over a century, yet this unusual behaviour is not well studied. New research led by scientists at the Babraham Institute, Cambridge reveals a new mechanism driving cell cannibalism that offers surprising insights into cancer biology.

Cell cannibalism, also called entosis, occurs when one cell surrounds, kills and digests another. Entosis doesn't typically happen between healthy cells but it is common in tumours. This latest research, published in the journal eLife, reveals that cannibalism can be triggered by cell division; when one cell divides to form two. Since uncontrolled cell division is a key hallmark of cancer, this suggests that cannibalism may have a role to play in resisting cancer.


A cell in the process of dividing (centre) that is being engulfed by cells on either side. DNA is shown in blue and a protein responsible for attachment between cells is shown in green.

Credit: Dr Jo Durgan, Babraham Institute

The research, which also includes scientists from Memorial Sloan Kettering Cancer Centre, USA and the Francis Crick Institute in London, examined human epithelial cells. These cells form many of the surfaces in the body and give rise to over 80% of human cancers. Normally, epithelial cells remain firmly attached to their surroundings when they divide. This study shows that weakened attachments result in more cell cannibalism. This may explain why drugs that weaken cell attachments are effective anti-cancer drugs.

First author on the paper, Dr Jo Durgan, said: "We set out to identify the proteins that control cell cannibalism in tumour cells, but by using time-lapse microscopy to watch this process in action, we stumbled across a completely unexpected new mechanism. The link we've found to cell division is really intriguing from the perspective of cancer."

Cell cannibalism has a complex relationship with cancer and it is not totally clear whether it helps or hinders tumour growth. However, the discovery that dividing cells are more likely to be cannibalised by other cells suggests that entosis may help to slow or prevent cancer by causing cancer cells to be consumed and destroyed by nearby healthy cells.

Lead scientist on the paper, Dr Oliver Florey, said: "Entosis is a fascinating process that may play a role in normal physiology, as well as cancer. By studying entosis, we hope to gain insights into fundamental cell biology, as well as to explore intriguing new avenues for cancer research. After 100 years of observing 'cell-in-cell' structures, there is now an exciting push towards discoveries in both cell and cancer biology."

Jonathan Lawson | EurekAlert!

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>