Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer sequencing initiative discovers mutations tied to aggressive childhood brain tumors

30.01.2012
St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project provides first evidence linking cancer to mutations in genes involved in DNA organization

Researchers studying a rare, lethal childhood tumor of the brainstem discovered that nearly 80 percent of the tumors have mutations in genes not previously tied to cancer. Early evidence suggests the alterations play a unique role in other aggressive pediatric brain tumors as well.

The findings from the St. Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project (PCGP) offer important insight into a poorly understood tumor that kills more than 90 percent of patients within two years. The tumor, diffuse intrinsic pontine glioma (DIPG), is found almost exclusively in children and accounts for 10 to 15 percent of pediatric tumors of the brain and central nervous system.

"We are hopeful that identifying these mutations will lead us to new selective therapeutic targets, which are particularly important since this tumor cannot be treated surgically and still lacks effective therapies," said Suzanne Baker, Ph.D., co-leader of the St. Jude Neurobiology and Brain Tumor Program and a member of the St. Jude Department of Developmental Neurobiology. She is a corresponding author of the study published in the January 29 online edition of the scientific journal Nature Genetics.

DIPG is an extremely invasive tumor that occurs in the brainstem, which is at the base of the skull and controls such vital functions as breathing and heart rate. DIPG cannot be cured by surgery and is accurately diagnosed by non-invasive imaging. As a result, DIPG is rarely biopsied in the U.S. and little is known about it.

Cancer occurs when normal gene activity is disrupted, allowing for the unchecked cell growth and spread that makes cancer so lethal. In this study, investigators found 78 percent of the DIPG tumors had alterations in one of two genes that carry instructions for making proteins that play similar roles in packaging DNA inside cells. Both belong to the histone H3 family of proteins. DNA must be wrapped around histones so that it is compact enough to fit into the nucleus. The packaging of DNA by histones influences which genes are switched on or off, as well as the repair of mutations in DNA and the stability of DNA. Disruption of any of these processes can contribute to cancer.

Researchers said that the mutations seem unique to aggressive childhood brain tumors.

"It is amazing to see that this particular tumor type appears to be characterized by a molecular 'smoking gun' and that these mutations are unique to fast-growing pediatric cancers in the brain," said Richard K. Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis and one of the study's corresponding authors. "This is exactly the type of result one hopes to find when studying the genomes of cancer patients."

The results are the latest from the PCGP, an ambitious three-year effort to sequence the complete normal and cancer genomes of 600 children with some of the most poorly understood and aggressive pediatric cancers. The human genome includes the complete set of instructions needed to assemble and sustain human life. The goal is to identify differences that explain why cancer develops, spreads and kills. Researchers believe the findings will provide the foundation for new tools to diagnose, treat or prevent the disease.

For this study, researchers sequenced the complete normal and cancer genomes of seven patients with DIPG. "The mutations were found at such high frequency in the cancer genomes of those seven patients that we immediately checked for the same alterations in a larger group of DIPGs," Baker said. When researchers sequenced all 16 of the related genes that make closely related variants of histone H3 proteins in an additional 43 DIPGs, they found many of the tumors contained the same mistakes in only two of these genes.

Of the 50 DIPG tumors included in this study, 60 percent had a single alteration in the makeup of the H3F3A gene. When the mutated gene was translated into a protein, the point mutation led to the substitution of methionine for lysine as the 27th amino acid in this variant of histone H3 protein. Another 18 percent of the DIPG patients carried the same mistake in a different gene, HIST1H3B.

Researchers are now working to understand how mutations in H3F3A and HIST1H3B impact cell function and contribute to cancer. Earlier research provides some clues. The lysine that is mutated is normally targeted by enzymes that attach other molecules to histone H3, influencing how it interacts with other proteins that regulate gene expression, Baker said. Mutations in the enzymes that target histone H3 have been identified in other cancers, but this is the first report showing a specific alteration of histones in cancer.

H3F3A and HIST1H3B were also mutated in other aggressive childhood brain tumors, glioblastoma, that develop outside the brain stem. Of 36 such tumors included in this study, 36 percent carried one of three distinct point mutations in the genes. The alterations included another single change in the makeup of H3F3A not found in DIPGs.

The histone H3 genes, however, were not mutated in any of the 252 other childhood tumors researchers checked for this study. The list included the brain tumors known as low-grade gliomas, medulloblastomas and ependymomas plus other cancers outside the brain and nervous system. The H3 changes have not been reported in any other cancers, including adult glioblastoma. "This suggests these particular mutations give a very important selective advantage, particularly in the developing brainstem and to a lesser degree in the developing brain, which leads to a terribly aggressive brain tumor in children, but not in adults," Baker said.

"This discovery would not have been possible without the unbiased approach taken by the Pediatric Cancer Genome Project," Baker said. "The mutations had not been reported in any other tumor, so we would not have searched for them in DIPGs. Yet the alterations clearly play an important role in generating this particular tumor."

The study's first authors are Gang Wu, Alberto Broniscer and Troy McEachron, all of St. Jude. The study's other corresponding authors are Jinghui Zhang and James Downing, both of St. Jude. The other study authors are Charles Lu, Li Ding and Elaine Mardis, all of Washington University; and Barbara Paugh, Jared Becksfort, Chunxu Qu, Robert Huether, Matthew Parker, Junyuan Zhang, Amar Gajjar, Michael Dyer, Charles Mullighan, Richard Gilbertson and David Ellison, all of St. Jude.

The research was funded in part by the PCGP, including Kay Jewelers, a lead project sponsor; the National Institutes of Health, the Sydney Schlobohm Chair of Research from the National Brain Tumor Society; the Cure Starts Now Foundation, Smile for Sophie Forever Foundation, Tyler's Treehouse Foundation, Musicians Against Childhood Cancer, the Noyes Brain Tumor Foundation and ALSAC.

St. Jude Children's Research Hospital

Since opening 50 years ago, St. Jude Children's Research Hospital has changed the way the world treats childhood cancer and other life-threatening diseases. No family ever pays St. Jude for the care their child receives and, for every child treated here, thousands more has been saved worldwide through St. Jude discoveries. The hospital has played a pivotal role in pushing U.S. pediatric cancer survival rates from 20 to 80 percent overall, and is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted to children. It is also a leader in the research and treatment of blood disorders and infectious diseases in children. St. Jude was founded by the late entertainer Danny Thomas, who believed that no child should die in the dawn of life. Join that mission by visiting http://www.stjude.org or following us on http://www.facebook.com/stjude and Twitter@StJudeResearch.

Washington University School of Medicine

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

St. Jude Media Relations Contacts

Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org
Washington University Media Relations Contact
Caroline Arbanas
(cell) 314-445-4172
(desk) 314-286-0109
arbanasc@wustl.edu

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Brain Cancer DIPG DNA Gates Foundation Genom Neurobiology brain tumor childhood tumor nervous system

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>