Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer’s Next Magic Bullet May Be Magic Shotgun

18.06.2012
Network Approach to Drug Design May Yield More Effective and Less Toxic Cancer Drugs, UCSF Study Suggests
A new approach to drug design, pioneered by a group of researchers at the University of California, San Francisco (UCSF) and Mt. Sinai, New York, promises to help identify future drugs to fight cancer and other diseases that will be more effective and have fewer side effects.

Rather than seeking to find magic bullets — chemicals that specifically attack one gene or protein involved in one particular part of a disease process — the new approach looks to find “magic shotguns” by sifting through the known universe of chemicals to find the few special molecules that broadly disrupt the whole diseases process.

“We’ve always been looking for magic bullets,” said Kevan Shokat, PhD, a Howard Hughes Medical Institute Investigator and chair of the Department of Cellular and Molecular Pharmacology at UCSF. “This is a magic shotgun — it doesn’t inhibit one target but a set of targets — and that gives us a much, much better ability to stop the cancer without causing as many side effects.”

Described in the June 7, 2012 issue of the journal Nature, the magic shotgun approach has already yielded two potential drugs, called AD80 and AD81, which in fruit flies were more effective and less toxic than the drug vandetanib, which was approved by the U.S. Food & Drug Administration last year for the treatment of a certain type of thyroid cancer.

Expanding the Targets to Lower a Drug’s Toxicity

Drug design is basically all about disruption. In any disease, there are numerous molecular interactions and other processes that take place within specific tissues, and in the broadest sense, most drugs are simply chemicals that interfere with the proteins and genes involved in those processes. The better a drug disrupts key parts of a disease process, the more effective it is.

The toxicity of a drug, on the other hand, refers to how it also disrupts other parts of the body’s system. Drugs always fall short of perfection in this sense, and all pharmaceuticals have some level of toxicity due to unwanted interactions the drugs have with other molecules in the body.

Scientists use something called the therapeutic index (the ratio of effective dose to toxic dose) as a way of defining how severe the side effects of a given drug would be. Many of the safest drugs on the market have therapeutic indexes that are 20 or higher — meaning that you would have to take 20 times the prescribed dose to suffer severe side effects.

Many cancer drugs, on the other hand, have a therapeutic index of 1. In other words, the amount of the drug you need to take to treat the cancer is the exact amount that causes severe side effects. The problem, said Shokat, comes down to the fact that cancer drug targets are so similar to normal human proteins that the drugs have widespread effects felt far outside the tumor.

While suffering the side effects of drugs is a reality that many people with cancer bravely face, finding ways of minimizing this toxicity is a big goal pharmaceutical companies would like to solve. Shokat and his colleagues believe the shotgun approach is one way to do this.

The dogma that the best drugs are the most selective could be wrong, he said, and for cancer a magic shotgun may be more effective than a magic bullet.

Looking at fruit flies, they found a way to screen compounds to find the few that best disrupt an entire network of interacting genes and proteins. Rather than judging a compound according to how well it inhibits a specific target, they judged as best the compounds that inhibited not only that specific target but disrupted other parts of the network while not interacting with other genes and proteins that would cause toxic side effects.

The article, “Chemical genetic discovery of targets and anti-targets for cancer polypharmacology” by Arvin C. Dar, Tirtha K. Das, Kevan M. Shokat and Ross Cagan appears in the June 7, 2012 issue of the journal Nature.

This work was supported by the American Cancer Society, The Waxman Foundation, and the National Institutes of Health—through grants R01CA109730, R01CA084309, R01EB001987 and P01 CA081403-11.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Drug Delivery MAGIC Nature Immunology Shotgun UCSF bullet cancer drug disease process drugs magic bullets

More articles from Life Sciences:

nachricht A new view of microscopic interactions
01.07.2020 | University of Missouri-Columbia

nachricht Microscope allows gentle, continuous imaging of light-sensitive corals
01.07.2020 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>