Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Protein's Surprising Role as Memory Regulator

26.09.2011
Finding could be relevant to Alzheimer's disease treatment

Scientists at Dana-Farber Cancer Institute and Harvard Medical School have found that a common cancer protein leads a second, totally different life in normal adult brain cells: It helps regulates memory formation and may be implicated in Alzheimer's disease.

Cyclin E is a well-known culprit that drives many types of solid tumors and blood cancers. The report, published online in Developmental Cell, is the first revelation that cyclin E has a crucial role in the formation of nerve connections, or synapses, in the brain. Synapses are tiny connections between brain cells where memories are stored.

"This protein has a double life," said Peter Sicinski, PhD, a cancer biologist at Dana-Farber and senior author of the publication. "It is overexpressed in many different cancers, but it also is expressed in high levels in the human brain. We have found that cyclin E is needed for memory formation and is a very important player."

The researchers found potential evidence linking cyclin E to Alzheimer’s disease, because it binds to an enzyme called Cdk5 that is involved in memory.

"There is good evidence that hyperactivity of Cdk5 contributes to Alzheimer's disease and inhibiting this enzyme can ameliorate symptoms in animals," said Sicinski, who is also a professor of Genetics at Harvard Medical School. "Manipulating cyclin E levels might be another way to accomplish this."

The scientists didn’t test cyclin E in Alzheimer’s mice, but they did show that when cyclin E binds to Cdk5 molecules, it locks them away in an unusable form. Moreover, when the researchers reduced cyclin E levels in mouse brain cells, fewer nerve connections formed and the animals' memories suffered.

Cyclins are a family of related proteins found in dividing cells. They serve as biological switches, controlling a cell's progression from one phase of its life cycle to the next. The actual signals to exit one phase and enter the next are issued by enzymes called cyclin-dependent kinases, or Cdks, that bind to cyclins.

Many types of cancer cells, including breast, ovarian, colon, and blood cancers, are driven by the overexpression of cyclin E, which acts like a car's accelerator pressed to the floor, speeding the cells through their growth-and-division cycle and allowing tumors to form and spread.

Though cyclin E is mainly found in dividing cells, researchers discover about a decade ago that cyclin E is also plentiful in adult, differentiated brain cells. But what it was doing there, no one knew.

In the current Developmental Cell paper, Junko Odajima, PhD, a postdoctoral fellow in the Sicinski laboratory and the paper's co-lead author (with Zachary P. Wills, PhD, from Harvard Medical School), showed that cyclin E in the brain attaches itself to the Cdk5 enzyme. When cyclin E molecules bind to and inactive Cdk5, synapses formation is increased, and, presumably, memory function improves.

Odajima tested this idea using a standard memory and learning test in which mice swimming in water must find a submerged platform to rest on, and remember its location in subsequent trials. The researchers then move the platform, requiring the animals to "forget" its previous location and learn and remember the new one.

As their hypothesis had suggested, mice deficient in cyclin E performed worse than rodents who had a normal amount of cyclin E. This contrast highlighted the importance of cyclin E for learning and memory.

Whether cyclin E levels rise and fall in the mouse brain during learning tasks is a topic of further research, said the scientists, who also plan to determine whether abnormal cyclin E levels can be linked to neurological diseases and learning disorders.

Other authors on the publication include Jarrod Marto, PhD, of Dana-Farber, Michael E. Greenberg, PhD, of Harvard Medical School, and Stephen J. Moss from Tufts University School of Medicine.

The National Institutes of Health supported the research.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Follow Dana-Farber on Twitter: @danafarber

Follow Dana-Farber on Facebook: https://www.facebook.com/danafarbercancerinstitute

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>