Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drug cisplatin found to bind like glue in cellular RNA

22.11.2011
Discovery opens a new targeting scheme for drug delivery that potentially would reduce toxic side effects

An anti-cancer drug used extensively in chemotherapy binds pervasively to RNA -- up to 20-fold more than it does to DNA, a surprise finding that suggests new targeting approaches might be useful, according to University of Oregon researchers.

Medical researchers have long known that cisplatin, a platinum compound used to fight tumors in nearly 70 percent of all human cancers, attaches to DNA. Its attachment to RNA had been assumed to be a fleeting thing, says UO chemist Victoria J. DeRose, who decided to take a closer look due to recent discoveries of critical RNA-based cell processes.

"We're looking at RNA as a new drug target," she said. "We think this is an important discovery because we know that RNA is very different in tumors than it is in regular healthy cells. We thought that the platinum would bind to RNA, but that the RNA would just degrade and the platinum would be shunted out of the cell. In fact, we found that the platinum was retained on the RNA and also bound quickly, being found on the RNA as fast as one hour after treatment."

The National Institutes of Health-supported research is detailed in a paper placed online ahead of regular publication in ACS Chemical Biology, a journal of the American Chemical Society. Co-authors with DeRose, a member of the UO chemistry department and Institute of Molecular Biology, were UO doctoral students Alethia A. Hostetter and Maire F. Osborn.

The researchers applied cisplatin to rapidly dividing and RNA-rich yeast cells (Saccharomyces cerevisiae, a much-used eukaryotic model organism in biology). They then extracted the DNA and RNA from the treated cells and studied the density of platinum per nucleotide with mass spectrometry. Specific locations of the metal ions were further hunted down with detailed sequencing methods. They found that the platinum was two to three times denser on DNA but that there was a much higher whole-cell concentration on RNA. Moreover, the drug bound like glue to specific sections of RNA.

DeRose is now pursuing the ramifications of the findings. "Can this drug be made to be more or less reactive to specific RNAs?" she said. "Might we be able to go after these new targets and thereby reduce the drug's toxicity?"

While cisplatin is effective in reducing tumor size, its use often is halted because of toxicity issues, including renal insufficiency, tinnitus, anemia, gastrointestinal problems and nerve damage.

The extensive roles of RNA have come under intense scrutiny since completion of the human genome opened new windows on DNA, life's building blocks. It had been assumed that RNA was simply a messenger that coded for protein activity. New technologies, DeRose said, have shown that a vast amount of RNA performs an amazing level of different functions in gene expression, controlling it in specific ways during development or disease, particularly in cancer cells.

In this project, DeRose's team only explored cisplatin's binding on two forms of RNA: ribosomes, where the highest concentration of the drug was found; and messenger RNA. There are more areas to be looked at, said DeRose, whose group initially developed experience using and mapping platinum's activity as a mimic for other metals in her research on RNA enzymes.

DeRose is now planning work with UO colleague Hui Zong, a biologist studying how cancer emerges, to extend the research into mouse cells to see if the findings in yeast RNA hold up. An additional collaboration with UO chemist Michael Haley involves the creation of new platinum-based drugs with "reaction handles" that will allow researchers to easily pull the experimental drugs out of cells, while still attached to their biological targets. New developments in 'deep' RNA sequencing, available through the UO's Genomic Core Facilities, could then provide a much broader view of platinum's preferred resting sites in the cell.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Victoria DeRose, professor of chemistry, 541-346-3568, derose@uoregon.edu

Links:

DeRose chemistry faculty page:
http://www.uoregon.edu/~chem/fac.html?derose
DeRose at Institute of Molecular Biology:
http://molbio.uoregon.edu/facres/derose.html
Department of Chemistry:
http://chemistry.uoregon.edu/

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>