Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cell collaborators smooth the way for cancer cells to metastasize

14.12.2015

At ASCB 2015: Cancer cell collaborators unmasked

At ASCB 2015, Vanderbilt researchers show how metastasizing tumors use non-cancerous fibroblasts to make a migration highway through surrounding extracellular matrix.


Red labeled JHU12 head and neck carcinoma cells are migrating on CAF-derived extracellular matrix (green). Images were taken every 10 minutes for 3 hours using a confocal microscope.

Credit: Begum Erdogan & Donna Webb, Vanderbilt University

To get moving, metastasizing cancer needs to enlist non-cancerous collaborators. Suspicions about where these secret cancer allies might be lurking have long been directed at the fibroblasts, the cells that secrete and organize the extracellular matrix (ECM), the ground on which surrounding cells can get a grip. Increasing evidence suggests that fibroblasts near growing tumors are actively assisting cancer cells in spreading locally and metastasizing elsewhere.

But exactly how these cancer-associated fibroblasts (CAFs) provide aid to the cancer enemy was not known until a recent discovery by Begum Erdogan and colleagues in Donna Webb's lab at Vanderbilt University--CAFs clear a highway through the ECM for migrating cancer cells. The researchers will present their work at ASCB 2015 in San Diego on Sunday, December 13 and Tuesday, December 15.

The roadway that CAFs arrange is made of parallel fibers of fibronectin (Fn), a major protein in the ECM mix secreted by all fibroblasts. The Vanderbilt researchers observed CAFs rearranging Fn into parallel bundles instead of the dense mesh that normal tissue fibroblasts (NAFs) make. Taking cancer cells grown from prostate as well as head and neck tumors, the researchers plated them on ECM from CAFs and NAFs. The cancer cells on the CAF matrix were better at moving in a single direction.

But why? CAFs rearrange the matrix into a road because they get a better grip on Fn fibers, the researchers discovered. Using traction force microscopy, they were able to measure the difference. CAFs were stronger than NAFs because they were better at delivering force from the motor protein, myosin II, through connectors called integrins to Fn fibers.

CAFs had higher levels of a Fn-binding integrin plus a switched-on GTPase called Rac, which is critical to cell movement. Inhibiting myosin-II activity with a drug deprived CAFs of their super traction powers and the ECM reverted to its normal disorder. These results solve a longstanding puzzle about cancer metastasis and point to the matrix as a possible target for drugs to stop cancer in its tracks.

###

Cancer-associated fibroblasts promote directional migration of cancer cells via parallel organization of the fibronectin matrix
B. Erdogan1, M. Ao1, B.M. Brewer2, O.E. Franco3,4,5, S.W. Hayward3,4,5, D. Li2, D.J. Webb1,3
1Biological Sciences, Vanderbilt University, Nashville, TN, 2Mechanical Engineering, Vanderbilt University, Nashville, TN, 3Cancer Biology, Vanderbilt University, Nashville, TN, 4Urologic Surgery, Vanderbilt University, Nashville, TN, 5Surgery, NorthShore University HealthSystem, Evanston, IL

Contact author: Begum Erdogan
begum.erdogan@Vanderbilt.Edu
Lab (615) 343-9031

At ASCB 2015
Author presents:
Microsymposium 01: Cell Motility & Migration
Sunday, December 13
12:05-12:10 pm
Microsymposia Room 1

Integrins & Cell-ECM Interactions
Tuesday, December 15
1:30-3:00 pm
P2225
Board Number: B1356
ASCB Learning Center

For ASCB, contact: John Fleischman
jfleischman@ascb.org

Video available: "JHUcells on CAF-CDM" https://vimeo.com/147615483
Caption for video: Red labeled JHU12 head and neck carcinoma cells are migrating on CAF-derived extracellular matrix (green). Images were taken every 10 minutes for 3 hours using a confocal microscope.

John Fleischman | EurekAlert!

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>