Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer, bioelectrical signals and the microbiome connected

28.05.2014

Tufts biologists show bioelectrical signals control tumors arising from cancer-causing genes; fatty acid involved in process

Developmental biologists at Tufts University, using a tadpole model, have shown that bioelectrical signals from distant cells control the incidence of tumors arising from cancer-causing genes and that this process is impacted by levels of a common fatty acid produced by bacteria found in the tadpole and also in humans.

"Genetic information is often not enough to determine whether a cell will become cancerous; you also have to take into account the physiology of the cell and the bioelectrical signals it receives from other tissues. This has huge implications for diagnostic technology as well as our basic understanding of the role of genetics and physiology in oncology," said Michael Levin, Ph.D., Vannevar Bush Professor of Biology and corresponding author of the paper in the journal Oncotarget that describes the research. The paper appeared online in advance of print on May 1.

"These data also suggest a number of ways we might prevent, detect and treat cancer," Levin added, "for example, by using ion channel drugs – "electroceuticals" -- to target the bioelectric state of distant sites in the body. Ion channel agents, such as anti-epileptic drugs, are already approved for human use. "

... more about:
»Cancer »Oncotarget »acid »butyrate »drugs »levels »oncogenes »tadpoles »tumors

Levin and Brook T. Chernet, Ph.D., injected Xenopus laevis tadpoles with oncogenes associated with many human cancers. The oncogenes caused tumor-like structures to form in these locations. Levin and Chernet's study showed that the incidence of tumor formation could be significantly reduced through misexpression of hyperpolarizing ion channels, which control current flow across a cell membrane, even when these electrical signals originated far from the oncogene-expressing cells. "These distant bioelectric signals suppressed tumor growth, despite the cells' continued high levels of oncogene protein," said Chernet, a former doctoral student in Levin's lab.

Further investigation revealed that the tumor-suppressing effects of hyperpolarization were regulated by a mechanism involving the short chain fatty acid butyrate and its target, the enzyme histone deacetylase. In humans, butyrate is produced in the colon by natural bacterial fermentation of carbohydrates, and butyrate has been shown to protect against colorectal cancer. To confirm that bacterial butyrate was also involved in regulating distant tumor formation in tadpoles, the researchers administered antibiotics; they found that the drugs indeed reduced butyrate production and thereby stopped membrane-voltage-based tumor suppression.

Programming Bacteria to Prevent Tumors

"Our research uncovers a promising connection between the microbiome and cancer that is controlled by alterations in bioelectric signaling and also opens up exciting possibilities for biomedicine. Imagine bacteria that are metabolically programmed to produce butyrate levels appropriate to prevent tumors," said Levin.

The distance over which carcinogenesis can be predicted and controlled has been addressed in a handful of earlier studies, including work by Levin and colleagues. Levin and Chernet have shown that aberrant bioelectrical properties of tissue revealed the location where tumors were likely to form and that melanoma-like growth could be triggered by bioelectrical signaling of instructor cells far from the melanocytes. The two biologists say that more research is needed to determine whether such signaling occurs in mammalian cancer models and over what distance.

The Tufts biologists are also intrigued by the question of whether cancers emit bioelectrical information that could be detectable at a distance from the tumors themselves. "It is tempting to speculate that the long-range signaling connections are bi-directional," says Levin.

###

The research was supported by funding from the G. Harold and Leila Y. Mathers Charitable Foundation and DARPA (subaward W911NF-09-1-0125).

Chernet, B., & Levin, M. (2014). Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 5. This work was published May 1, 2014, online in advance of print.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoy a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | Eurek Alert!
Further information:
http://www.tufts.edu

Further reports about: Cancer Oncotarget acid butyrate drugs levels oncogenes tadpoles tumors

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>