Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer and Vampires: An Evolutionary Approach

22.06.2015

New Internet tool combines genomics and informatics to enable investigators, physicians or patients to analyze genes according to their evolutionary profiles and find associated genes

Two major revolutions, one genomic and one in informatics, are completely changing the face of biomedical research. Every day all over the world, millions of genetic sequences — from disease-related genes to complete genomes of plants, animals, bacteria and viruses — are resolved, identified and dissected.


Dr. Yuval Tabach at the Hebrew University’s Institute for Medical Research Israel Canada has developed a new Internet tool that will allow any investigator, physician or patient to analyze a gene according to its evolutionary profile and find associated genes. (Photo credit: The Hebrew University of Jerusalem)

One of the most fascinating applications of the available information stemming from different organisms is the possibility to identify novel disease-related genes and predict their biological functions. The technique is simple and based on the fact that genes that work together or those that play an important role in biology will be present together in organisms that need them.

Conversely, genes connected to a particular function like vision will disappear from species that have lost the power of sight, and may therefore be identified by a comparison to the genes in normal animals.

Now, Dr. Yuval Tabach, a researcher from IMRIC — the Institute for Medical Research Israel Canada in the Hebrew University of Jerusalem’s Faculty of Medicine, has developed a new Internet tool that will allow any investigator, physician or patient to analyze a gene according to its evolutionary profile.

Dr. Tabach’s application is a product of his continuing research, which he began as a Fellow at Harvard University in collaboration with researchers and physicians from all over the world. This research revealed the possibility of comparing the evolutionary profiles derived from multiple organisms to predict the biological functions and clinical relevance of given genes. One of the most important applications of this approach is the possibility to identify genes associated with genetic diseases and cancer.

One example of a known mutation which increases the likelihood of developing breast and ovarian cancers is in the BRCA1 gene. Interest in this gene was highlighted when, in 2013, Angelina Jolie, having discovered that she had inherited the dangerous mutation from her mother who died of cancer aged 56, decided to undergo a preventative double mastectomy. However in the majority of cases, both for breast cancer and other genetically transmitted diseases, the identity of the gene responsible is unknown.

By using the methods of genetic analysis developed by Dr. Tabach, researchers can now identify genes within the same network as the BRCA1 gene, or other associations of genes, simply by scanning the evolutionary profiles of tens of organisms with a single click. The number of organisms that can be scanned in this way is anticipated to increase to hundreds in the near future.

“The significance of this tool is that anyone, physician or researcher, can input results from genetic mapping studies concerning suspected genes, and the tool will identify evolutionary, and probably functional, connections to known genes with association to diseases” explains Dr. Tabach. “The process is rapid, without cost or time wasted, and enables the identification of genes responsible for diseases.”

An interesting example of a gene that could be identified using this phylogenetic profiling approach is the so-called “Vampire’s Disease,” more professionally termed porphyria. Representing a family of genetic diseases characterized by abdominal pain, sensitivity to sunlight, purple urine, and psychotic episodes, porphyria probably forms the basis for the prevalent myths of vampires.

These diseases are rare, but there is evidence for hereditary porphyria in European royal families, and it may have been responsible for the madness of King George III as well as for the psychotic behavior of the painter Vincent Van Gogh, misdiagnosed as a depressive schizophrenic. Dr. Tabach demonstrated how, with one click, it is possible to identify essentially all the genes known to be associated with porphyria as well as other genes that, based on their phylogenetic profile, are very likely to be involved.

The bioinformatics methods developed by Dr. Tabach have formed the basis for the establishment of a company dealing with computational pharmaceutics which will identify new indications for existing therapeutic agents. This could dramatically decrease the time and expense required to bring a new drug to market, and facilitate the development of treatments for rare orphan diseases.

In the coming years, Dr. Tabach’s laboratory intends to focus on the identification of genes that prevent aging and protect against cancer, by consideration of the genes of some fascinating species of organisms with increased longevity and an almost complete resistance to cancer. In addition the laboratory is working with a model which describes almost 40 neurological diseases with a related etiology including Huntington’s disease, ataxia, and fragile X syndrome.

The research paper, co-authored with collaborators from Massachusetts General Hospital and Harvard Medical School in Boston, appears in the journal Nucleic Acids Research as “PhyloGene server for identification and visualization of coevolving proteins using normalized phylogenetic profiles” (doi: 10.1093/nar/gkv452).

Support for the research came from Hebrew University of Jerusalem start-up funds.

The Institute for Medical Research-Israel Canada (IMRIC), in the Hebrew University of Jerusalem's Faculty of Medicine, is one of the most innovative biomedical research organizations in Israel and worldwide. IMRIC brings together the most brilliant scientific minds to find solutions to the world's most serious medical problems, through a multidisciplinary approach to biomedical research. More information at http://imric.org 

The Hebrew University of Jerusalem is Israel’s leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en 

To contact the researchers: Dr. Yuval Tabach, yuvaltab@ekmd.huji.ac.il.

For more information:

Dov Smith
Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University of Jerusalem

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>