Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

26.05.2017

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections. If, however, this bacterium overcomes the external barrier such as skin or the mucosa, thus, invading the body, it can cause infections.


Methicillin-resistant Staphylococcus aureus (MRSA) (mustard-coloured) engulfed by a red coloured white blood cells (neutrophil granulocyte)

National Institute of Allergy and Infectious Diseases (NIAID)

Staphylococcus aureus is responsible for a variety of infections that occur in hospitals or care facilities. Some S. aureus strains develop resistances against multiple antibiotics. These so-called MRSAs (multi-resistant S. aureus) cause infections difficult to treat.

So far, all attempts to develop a protective vaccine against S. aureus have failed despite promising results in animal models. One reason might be that the mechanisms of the human immune response against this pathogen are so far not sufficiently understood. In healthy adults, specific immune cells of the adaptive immune system – so-called T-cells – can specifically recognise S. aureus.

There are different T-cells, distinguishable by their surface proteins, which are required for binding to antigen-presenting cells. It was already known that so-called CD4-postive (CD4 protein bearing) T-helper cells can be formed during the immune response against S. aureus. However, these CD4-positive T-cells are not effective against bacteria loacted within cells.

The situation is different for CD8-positive T-cells. They recognise fragments of bacteria which have been processed within the cell and are presented on the surface and provoke the killing of these infected cells. Researchers at the PEI under the supervision of Priv.-Doz. Dr Isabelle Bekeredjian-Ding (MD), head of Division Microbiology demonstrated for the first time that specific CD8-positive T-cells against S. aureus are also formed by the immune system.

However, when examining this T-cell subtype, the researchers realised that when getting into contact with S. aureus, these cells produced substances that did not support the elimination of the pathogen. Instead, the type of released messenger substances assumes that they contribute to immune tolerance against the bacterium by influencing so-called regulatory T-cells and type-2 helper cells. Such influenced regulatory T-cells can prevent or inhibit the activation of the immune response, thus controlling tolerance of the immune system. That way, they can prevent the elimination of the bacterium.

In addition, the PEI researchers were able to show that S. aureus mediated the production of factor G-CSF (Granulocyte-Colony Stimulating Factor) which is, among other things, released during inflammations of the body and inhibits inflammatory T-cell responses. However, the researchers did not only detect T-cell responses that inhibited immunity but also T-cell responses to S. aureus, which were able to start inflammatory processes and could in principle induce the clearance of the pathogenic agent. However, their ratio compared with regulatory T-cells was so low that their effect was negligible.

Dr Bekeredjian-Ding and colleagues were able to show now how this ratio can be shifted in favour of a stronger immune response against S. aureus: The proinflammatory T-cell response could be enhanced by adding immune-active S. aureus components, so-called antigens, which were formed by delivery of messenger RNA (mRNA) of the pathogen into certain immune cells. The use of mRNA produced in the laboratory as a source of antigen is already a well-established method of treatment to induce T-cell responses in tumour therapy to kill infected cells. "Our results show that , in fact, an immune memory against Staphylococcus aureus does exist. We consider it as possible that mRNA-containing vaccines can be used to alter T-cell responses against these pathogens in the body and to increase the portion of protective T-cells", explained Dr Bekeredjian-Ding when presenting the results.

Original Publication

Uebele J, Stein C, Nguyen MT, Schneider A, Kleinert F, Tichá O, Bierbaum G, Götz F, Bekeredjian-Ding I (2017): Antigen delivery to dendritic cells shapes human CD4+ and CD8+ T cell memory responses to Staphylococcus aureus.
PLOS Pathog May 25 [Epub ahead of print].

Weitere Informationen:

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006387

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft
Further information:
http://www.pei.de/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>