Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can an antifreeze protein also promote ice formation?

15.03.2019

New research shows that some antifreeze proteins can do both

Antifreeze is life's means of surviving in cold winters: Natural antifreeze proteins help fish, insects, plants and even bacteria live through low temperatures that should turn their liquid parts to deadly shards of ice. Strangely enough, in very cold conditions, the same proteins can also promote the growth of ice crystals.


View of a research chip through a microscope: a high concentration of antifreeze proteins ensures that the drops freeze at temperatures that are less cold than usual (frozen drops are dark). Photo: Bielefeld University

Credit: Weizmann Institute of Science

This was the finding of experiments carried out in Israel and Germany using proteins taken from fish and beetles. The results of this study, recently published in the Journal of Physical Chemistry Letters, could have implications for understanding the basic processes of ice formation.

Antifreeze proteins do not prevent ice from forming in the first place. They wrap themselves around tiny ice crystals - the nuclei that provide the "template" for growing larger ice crystals - and stop them from growing. Flour beetle larvae, for example, have such proteins on their outer shells, to keep away ice that could break their fragile skin.

The scientists wanted to compare the antifreeze proteins to natural proteins that can promote the growth of ice crystals. Some bacteria, for example, are known to grow sharp ice crystals that then split the skins of ripe tomatoes. Although it was believed that these two kinds of protein were very different, previous scientific studies suggested that they were more similar than thought.

The basic premise was based on the idea that antifreeze proteins have an active site that can bind to ice; and an ice binding site can support the formation of an initial ice nucleus that has the potential to grow into an ice crystal. The problem was that, until now, there had been little way to truly isolate the actions of these biological molecules.

The present study was led by Prof. Thomas Koop of Bielefeld University in Germany, and, in collaboration with the group of Prof. Ido Braslavsky of the Hebrew University of Jerusalem and Prof. Yinon Rudich of the Weizmann Institute of Science. It was made possible by a device developed in the group of Prof. Yinon Rudich, which they dubbed WISDOM (Weizmann Supercooled Droplets Observation on a Microarray).

This microfluidic device has micron- sized channels and droplet traps that enabled the researchers to capture microdroplets of ultra-pure water on each chip. They then added carefully measured amounts of antifreeze proteins purified from flour beetle larvae or from a fish that lives in the arctic year-round.

Once the antifreeze proteins were added to the droplets, they were cooled to chilling temperatures. The water was still liquid, even though it had already been cooled to well below its normal freezing point (thus, supercooled), in part because it was lacking the impurities that normally make our water turn into ice cubes at 0 degrees. Ice thus formed in the samples only as the water temperature dropped below minus 30. This setup enabled the group to be sure that any ice-forming or -preventing activity was solely due to the actions of the proteins.

While in pure water microdroplets with nothing added, ice would begin to form at around 38.5 degrees below zero, in around half of the samples with antifreeze proteins, ice crystals began forming at a higher temperature - close to minus 34. In other words, at certain temperatures, which are extreme but not unknown on the planet, the antifreeze actually becomes pro-freeze, initiating the growth of ice crystals.

The group compared these findings to what is known about the natural proteins that promote the growth of ice crystals (ice-nucleating proteins, or INPs). INPs can efficiently form ice at higher temperatures than those in which the antifreeze proteins switched to ice production. The scientists posit that the main difference is in the size of the proteins - INPs are substantially larger.

Thus this finding adds to our understanding of both ice formation and prevention. For Prof. Rudich, whose work focuses on atmosphere and climate, it may help shed light on the physical processes that affect cloud formation, in which proteins and other complex molecules have an impact on the development of ice crystals in clouds.

Antifreeze proteins like those in the fish are used today, among other things, to keep ice cream smooth and to keep outside surfaces frost-free. This study suggests that these proteins may have limitations, and could actually promote ice buildup when exposed to extremely cold temperatures such as those that hit the North American continent this year. INPs have their uses as well, for examples in ski resorts that want to extend their seasons, so this study on antifreeze proteins could even point to ways of creating better ice-forming ones.

###

Prof. Yinon Rudich's research is supported by the Nancy and Stephen Grand Research Center for Sensors and Security; the Dr. Scholl Center for Water and Climate; the David and Fela Shapell Family Foundation INCPM Fund for Preclinical Studies; the Sussman Family Center for the Study of Environmental Sciences; the Benoziyo Endowment Fund for the Advancement of Science; the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research; the De Botton Center for Marine Science; Dana and Yossie Hollander; the Herbert L. Janowsky Lung Cancer Research Fund; Paul and Tina Gardner; Adam Glickman; the estate of Fannie Sherr; and the estate of David Levinson.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Gizel Maimon | EurekAlert!
Further information:
https://wis-wander.weizmann.ac.il/chemistry/can-antifreeze-protein-also-promote-ice-formation

Further reports about: antifreeze proteins ice crystals ice formation proteins

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>